November 30 Math 2306 sec. 57 Fall 2017

Section 18: Sine and Cosine Series

If f is even on $(-p, p)$, then the Fourier series of f has only constant and cosine terms. Moreover

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{p}\right)
$$

where
$a_{0}=\frac{2}{p} \int_{0}^{p} f(x) d x$
and
$a_{n}=\frac{2}{p} \int_{0}^{p} f(x) \cos \left(\frac{n \pi x}{p}\right) d x$.

Fourier Series of an Odd Function

If f is odd on $(-p, p)$, then the Fourier series of f has only sine terms. Moreover

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{p}\right)
$$

where
$b_{n}=\frac{2}{p} \int_{0}^{p} f(x) \sin \left(\frac{n \pi x}{p}\right) d x$.

Half Range Sine and Half Range Cosine Series

Suppose f is only defined for $0<x<p$. We can extend f to the left, to the interval $(-p, 0)$, as either an even function or as an odd function. Then we can express f with two distinct series:

Half range cosine series $f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{p}\right)$
where $\quad a_{0}=\frac{2}{p} \int_{0}^{p} f(x) d x$ and $a_{n}=\frac{2}{p} \int_{0}^{p} f(x) \cos \left(\frac{n \pi x}{p}\right) d x$.

Half range sine series $f(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{p}\right)$
where $\quad b_{n}=\frac{2}{p} \int_{0}^{p} f(x) \sin \left(\frac{n \pi x}{p}\right) d x$.

Find the Half Range Sine Series of f

$$
\begin{aligned}
& f(x)=2-x, \quad 0<x<2 \\
& f(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{2}\right) \quad p=2 \\
& b_{n}=\frac{2}{2} \int_{0}^{2} f(x) \sin \left(\frac{n \pi x}{2}\right) d x \\
&=\int_{0}^{2}(2-x) \sin \left(\frac{n \pi x}{2}\right) d x \quad u=2-x \quad d u=-d x \\
&=\left.\frac{-2}{n \pi}(2-x) \cos \left(\frac{n \pi x}{2}\right)\right|_{0} ^{2}-\frac{2}{n \pi} \int_{0}^{2} \cos \left(\frac{n \pi x}{2}\right) d x \quad v=\frac{-2}{n \pi} \operatorname{Cos}\left(\frac{n \pi x}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-2}{n \pi}\left((2-2) \cos \left(\frac{n \pi 2}{2}\right)-(2-0) \cos (0)\right) \\
& =\frac{-2}{n \pi}(-2)=\frac{4}{n \pi} \\
& f(x)=\sum_{n=1}^{\infty} \frac{4}{n \pi} \sin \left(\frac{n \pi x}{2}\right)
\end{aligned}
$$

Find the Half Range Cosine Series of f

$$
\begin{aligned}
& f(x)=2-x, \quad 0<x<2 \\
& f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{2}\right) \\
& a_{0}=\frac{2}{2} \int_{0}^{2} f(x) d x \quad a_{n}=\frac{2}{2} \int_{0}^{2} f(x) \cos \left(\frac{n \pi x}{2}\right) d x \\
& a_{0}=\int_{0}^{2}(2-x) d x=2 x-\left.\frac{x^{2}}{2}\right|_{0} ^{2}=4-2-0=2 \\
& a_{n}=\int_{0}^{2}(2-x) \cos \left(\frac{n \pi x}{2}\right) d x \quad u=2-x \quad d u=-d x \\
& d=\cos \left(\frac{n \pi x}{2}\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& =\left.\frac{2}{n \pi}(2-x) \operatorname{Sin}\left(\frac{n \pi x}{2}\right)\right|_{0} ^{2}+\frac{2}{n \pi} \int_{0}^{2} \operatorname{Sin}\left(\frac{n \pi x}{2}\right) d x V=\frac{2}{n \pi} \operatorname{Sin}\left(\frac{n \pi x}{2}\right) \\
& =-\left.\left(\frac{2}{n \pi}\right)^{2} \cos \left(\frac{n \pi x}{2}\right)\right|_{0} ^{2} \\
& =-\frac{4}{n^{2} \pi^{2}}\left[\cos \left(\frac{n \pi 2}{2}\right)-\cos (0)\right] \\
& =\frac{-4}{n^{2} \pi^{2}}\left((-1)^{n}-1\right)=\frac{4}{n^{2} \pi^{2}}\left(1-(-1)^{n}\right)
\end{aligned}
$$

$$
f(x)=1+\sum_{n=1}^{\infty} \frac{4}{n^{2} \pi^{2}}\left(1-(-1)^{n}\right) \cos \left(\frac{n \pi x}{2}\right)
$$

Plots of f with Half range series

Figure: $f(x)=2-x, 0<x<2$ with 10 terms of the sine series.

Plots of f with Half range series

Figure: $f(x)=2-x, 0<x<2$ with 10 terms of the sine series, and the series plotted over $(-6,6)$

Plots of f with Half range series

Figure: $f(x)=2-x, 0<x<2$ with 5 terms of the cosine series.

Plots of f with Half range series

Figure: $f(x)=2-x, 0<x<2$ with 5 terms of the cosine series, and the series plotted over $(-6,6)$

Solution of a Differential Equation

An undamped spring mass system has a mass of 2 kg attached to a spring with spring constant $128 \mathrm{~N} / \mathrm{m}$. The mass is driven by an external force $f(t)=2 t$ for $-1<t<1$ that is 2-periodic so that $f(t+2)=f(t)$ for all $t>0$. Determine a particular solution x_{p} for the displacement for $t>0$.

We con expuss the odd, peiodic function f as a Fouries sevies

$$
f(t)=\sum_{n=1}^{\infty} b_{n} \sin (n \pi t)
$$

On Nov. 16, we tound

$$
f(t)=2 \sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n \pi} \sin (n \pi t)
$$

OW ODE is

$$
\begin{aligned}
& \text { JDE is } \\
& 2 x^{\prime \prime}+128 x=2 \sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n \pi} \sin (n \pi t)
\end{aligned}
$$

In standand form

$$
\begin{aligned}
& \text { andand for } \\
& \begin{aligned}
x^{\prime \prime}+64 x & =\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n \pi} \sin (n \pi t) \\
& =\frac{2}{\pi} \sin (\pi t)-\frac{2}{2 \pi} \sin (2 \pi t)+\frac{2}{3 \pi} \sin (3 \pi t)-\ldots
\end{aligned}
\end{aligned}
$$

Using the melhod of undetamined ceefficients set

$$
\begin{aligned}
& x_{p}=\sum_{n=1}^{\infty} A_{n} \cos (n \pi t)+B_{n} \sin (n \pi t) \\
& x_{p}^{\prime}=\sum_{n=1}^{\infty}\left(-n \pi A_{n} \sin (n \pi t)+n \pi B_{n} \cos (n \pi t)\right)
\end{aligned}
$$

$$
\begin{aligned}
& x_{p}^{\prime \prime}= \sum_{n=1}^{\infty}\left(-(n \pi)^{2} A_{n} \operatorname{Cos}(n \pi t)-(n \pi)^{2} B_{n} \operatorname{Sin}(n \pi t)\right) \\
& x_{p}^{\prime \prime}+64 x_{p}= \sum_{n=1}^{\infty}-(n \pi)^{2} A_{n} \operatorname{Cor}(n \pi t)-(n \pi)^{2} B_{n} \operatorname{Sin}(n \pi t) \\
&+\sum_{n=1}^{\infty} 64 A_{n} \operatorname{Cor}(n \pi t)+64 B_{n} \operatorname{Sin}(n \pi t) \\
&= \sum_{n=1}^{\infty}\left[\left(-(n \pi)^{2} A_{n}+64 A_{n}\right) \operatorname{Cos}(n \pi t)+\left(-(n \pi)^{2} B_{n}+64 B_{n}\right) \sin (n \pi t)\right] \\
&=\sum_{n=1}^{\infty}\left[\frac{\left.0 \cdot \operatorname{Cos}(n \pi t)+\frac{2(-1)^{n+1}}{n \pi} \sin (n \pi t)\right]}{3 e r o}\right]
\end{aligned}
$$

Matching coefficiats

$$
\begin{aligned}
& -(n \pi)^{2} A_{n}+64 A_{n}=0 \\
& -(n \pi)^{2} B_{n}+64 B_{n}=\frac{2(-1)^{n+1}}{n \pi}
\end{aligned}
$$

$\left(64-n^{2} \pi^{2}\right) A_{n}=0 \quad \Rightarrow A_{n}=0$ for all n

$$
\left(64-n^{2} \pi^{2}\right) B_{n}=\frac{2(-1)^{n+1}}{n \pi} \Rightarrow B_{n}=\frac{2(-1)^{n+1}}{n \pi\left(64-n^{2} \pi^{2}\right)}
$$

$64-n^{2} \pi^{2} \neq 0$ for all n
so

$$
x_{p}=\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n \pi\left(64-n^{2} \pi^{2}\right)} \sin (n \pi t)
$$

