Nov. 4 Math 1190 sec. 51 Fall 2016

Section 4.7: Optimization

Let's Do One Together A can in the shape of a right circular cylinder is to have a volume of 128π cubic cm. The material that the top and bottom are made of costs $0.20/\text{cm}^2$ and the material that the lateral surface is made of costs $0.10/\text{cm}^2$. Find the dimensions of the can that minimize the total cost of production.

The surface of the con
Let
$$r$$
 be the base radius and h the
height.
Top + Botton πr^2 πr^2
circles
Loteral Surface Top + Botton area = $2\pi r^2$
 $2\pi r$ —
T Lateal surface area
 $S = 2\pi rh + 2\pi r^2$

The total cost C = (cost of lateral surface) + (cost of top & bottom). The cost for the lateral surface was $0.10/\text{cm}^2$ while the cost for the top and bottom material is $0.20/\text{cm}^2$. The surface area was $S = 2\pi rh + 2\pi r^2$. Which of the following is the cost function?

(a)
$$C = 2\pi rh + 2\pi r^2$$
 Cost / cm^2 . Area

(b)
$$C = 0.1(2\pi rh) + 0.2(2\pi r^2)$$

(c)
$$C = 0.2(2\pi rh) + 0.1(2\pi r^2)$$

(d)
$$C = (0.1)(0.2)(2\pi rh + 2\pi r^2)$$

The cost appears as a function of two variables, r and h. But we need it to be a function of only one variable.

The volume of the can $V = \pi r^2 h$. We are told it must hold 128π cm³. Which of the following could be used to express *C* as a function of *r* alone?

(a)
$$h = \frac{128}{r}$$

(b) $r = \frac{128}{\sqrt{h}}$
 $\sqrt{2 \pi r^2 h} = 12.8 \pi$
 $r^2 h = 12.8 \Rightarrow h = \frac{12.8}{r^2}$

(c)
$$h = \frac{128}{r^2}$$

We can write the cost function in terms of r as

$$C=\frac{25.6\pi}{r}+0.4\pi r^2$$

Which of the following is the derivative of C with respect to r?

(a)
$$\frac{dC}{dr} = \frac{-25.6\pi}{r^2} + 0.8\pi r$$

(b) $\frac{dC}{dr} = \frac{-25.6\pi + 0.8\pi r}{r^2}$
(c) $\frac{dC}{dr} = \frac{-25.6\pi + 0.8\pi r}{r^2}$
(c) $\frac{dC}{dr} = \frac{-25.6\pi + 0.8\pi r}{r^2}$
(c) $\frac{dC}{dr} = \frac{-25.6\pi + 0.8\pi r}{r^2}$

(c)
$$\frac{dC}{dr} = \frac{-25.6\pi}{r^2} + 0.4\pi r$$

Given that
$$\frac{dC}{dr} = \frac{-25.6\pi}{r^2} + 0.8\pi r,$$

The critical number(s) of *C* are
(a) 0 and 32
(b) 0 and $\sqrt[3]{32}$
(c) can't be determined without more information
(d) $\sqrt[3]{32}$
 $\frac{dC}{dr} = \frac{-25.6\pi}{r^2} + 0.8\pi r,$
 $\frac{C}{(r) = 0} = 3$
 $\frac{25.6\pi}{r^2} = 0.8\pi r,$
 $\Rightarrow r^3 = \frac{25.6}{0.8} = 32$
 $r = (32)^{1/3}$

We suspect that the optimal size for the radius, the one that minimizes cost is $\sqrt[3]{32}$. We decide to use the second derivative test to check. We find that

$$\frac{d^2C}{dr^2} = \frac{d}{dr} \left(\frac{-25.6\pi}{r^2} + 0.8\pi r \right) = \frac{51.2\pi}{r^3} + 0.8\pi$$

With no computation, we determine that $r = \sqrt[3]{32}$ is a local minimum because

(a) C''(r) is positive for all positive r, so the graph is concave up.

(b) C''(r) is negative for all positive *r*, so the graph is concave up.

(c) C''(r) is positive for all positive *r*, so the graph is concave down.

(d) C''(r) is negative for all positive r, so the graph is concave down.

Since the optimal $r = \sqrt[3]{32}$ and $h = \frac{128}{r^2}$ our recommendation for minimizing the cost is a can with dimensions

(a) radius of $\sqrt[3]{32}$ cm and height $128/\sqrt[3]{32}$ cm

(b) radius of $\sqrt[3]{32}$ cm and height $128/\sqrt[3]{32^2}$ cm

(c) radius of $\sqrt[3]{32}$ cm and height 4 cm