Nov. 4 Math 1190 sec. 52 Fall 2016
Section 4.7: Optimization
Let's Do One Together A can in the shape of a right circular cylinder is to have a volume of 128π cubic cm . The material that the top and bottom are made of costs $\$ 0.20 / \mathrm{cm}^{2}$ and the material that the lateral surface is made of costs $\$ 0.10 / \mathrm{cm}^{2}$. Find the dimensions of the can that minimize the total cost of production.

- The volume is preset © $128 \pi \mathrm{~cm}^{3}$
- We want to minimize cost, so we reed to construct a cost formula.

Let r and h be the radius and height of our cylinder, respectively.

Top + Bottom

Total area of Top + Bottom $=2 \pi r^{2}$

Total lateral surface area $=2 \pi r h$
Surface ave of can

$$
S=2 \pi r h+2 \pi r^{2}
$$

Question

The total cost $C=$ (cost of lateral surface) + (cost of top \& bottom). The cost for the lateral surface was $\$ 0.10 / \mathrm{cm}^{2}$ while the cost for the top and bottom material is $\$ 0.20 / \mathrm{cm}^{2}$. The surface area was $S=2 \pi r h+2 \pi r^{2}$. Which of the following is the cost function?

$$
\text { (a) } C=2 \pi r h+2 \pi r^{2}
$$

$$
\text { cost }=\text { cost } / \text { area area }
$$

(b) $C=0.1(2 \pi r h)+0.2\left(2 \pi r^{2}\right)$
(c) $C=0.2(2 \pi r h)+0.1\left(2 \pi r^{2}\right)$
(d) $C=(0.1)(0.2)\left(2 \pi r h+2 \pi r^{2}\right)$

Question

The cost appears as a function of two variables, r and h. But we need it to be a function of only one variable.

The volume of the can $V=\pi r^{2} h$. We are told it must hold $128 \pi \mathrm{~cm}^{3}$. Which of the following could be used to express C as a function of r alone?

$$
V=\pi r^{2} h=128 \pi
$$

(a) $h=\frac{128}{r}$

$$
\begin{aligned}
\pi r^{2} h & =128 \pi \\
r^{2} h & =128
\end{aligned}
$$

(b) $r=\frac{128}{\sqrt{h}}$

$$
h=\frac{128}{r^{2}}
$$

(c) $h=\frac{128}{r^{2}}$

Question

We can write the cost function in terms of r as

$$
C=\frac{25.6 \pi}{r}+0.4 \pi r^{2}
$$

Which of the following is the derivative of C with respect to r ?
(a) $\frac{d C}{d r}=\frac{-25.6 \pi}{r^{2}}+0.8 \pi r$

$$
C=25.6 \pi r^{-1}+0.4 \pi r^{2}
$$

$$
\frac{d C}{d r}=-25.6 \pi r^{-2}+2(0.4) \pi r
$$

(b) $\frac{d C}{d r}=\frac{-25.6 \pi+0.8 \pi r}{r^{2}}$

$$
=\frac{.25 .6 \pi}{r^{2}}+0.8 \pi r
$$

(c) $\frac{d C}{d r}=\frac{-25.6 \pi}{r^{2}}+0.4 \pi r$

Question

$$
\text { Given that } \quad \frac{d C}{d r}=\frac{-25.6 \pi}{r^{2}}+0.8 \pi r
$$

The critical numbers) of C are

$$
\text { zeno is not in the domain of } C
$$

(a) 0 and 32

$$
C^{\prime}(r)=0 \Rightarrow \frac{-25.6}{r^{2}} \pi+0.8 \pi r=0
$$

(b) 0 and $\sqrt[3]{32}$

$$
0.8 \pi r=\frac{25.6 \pi}{r^{2}}
$$

(c) can't be determined without more information

$$
r^{3}=\frac{25.6}{0.8}=32
$$

(d) $\sqrt[3]{32}$

$$
r=(32)^{1 / 3}
$$

Question

We suspect that the optimal size for the radius, the one that minimizes cost is $\sqrt[3]{32}$. We decide to use the second derivative test to check. We find that

$$
\frac{d^{2} C}{d r^{2}}=\frac{d}{d r}\left(\frac{-25.6 \pi}{r^{2}}+0.8 \pi r\right)=\frac{51.2 \pi}{r^{3}}+0.8 \pi
$$

With no computation, we determine that $r=\sqrt[3]{32}$ is a local minimum because
(a) $C^{\prime \prime}(r)$ is positive for all positive r, so the graph is concave up.
(b) $C^{\prime \prime}(r)$ is negative for all positive r, so the graph is concave up.
(c) $C^{\prime \prime}(r)$ is positive for all positive r, so the graph is concave down.
(d) $C^{\prime \prime}(r)$ is negative for all positive r, so the graph is concave down.

Question

Since the optimal $r=\sqrt[3]{32}$ and $h=128 / r^{2}$ our recommendation for minimizing the cost is a can with dimensions
(a) radius of $\sqrt[3]{32} \mathrm{~cm}$ and height $128 / \sqrt[3]{32} \mathrm{~cm}$
(b)) radius of $\sqrt[3]{32} \mathrm{~cm}$ and height $128 / \sqrt[3]{32^{2}} \mathrm{~cm}$
(c) radius of $\sqrt[3]{32} \mathrm{~cm}$ and height 4 cm

Section 4.8: Antiderivatives; Differential Equations

Definition: A function F is called an antiderivative of f on an interval $/$ if

$$
F^{\prime}(x)=f(x) \quad \text { for all } x \text { in } I .
$$

For example, $F(x)=x^{2}$ is an antiderivative of $f(x)=2 x$ on $(-\infty, \infty)$. Similarly, $G(x)=\tan x+7$ is an antiderivative of $g(x)=\sec ^{2} x$ on ($-\pi / 2, \pi / 2$).

Theorem: If F is any antiderivative of f on an interval I, then the most general antiderivative of f on $/$ is
$F(x)+C$ where C is an arbitrary constant.

Find the most general antiderivative of f.
(i) $f(x)=\cos x \quad I=(-\infty, \infty) \quad F(x)=\sin x$

So the most gunenc is

$$
\sin x+C
$$

Cis anting
(ii) $\quad f(x)=\frac{1}{x} \quad I=(0, \infty)$

$$
F(x)=\ln x
$$

most genend is $\ln x+C$

Question: Find the most general antiderivative of f.
(iii) $\quad f(x)=\frac{1}{1+x^{2}} \quad I=(-\infty, \infty)$
(a) $F(x)=\frac{x}{x+x^{3} / 3}+C \quad$ note $\frac{d}{d x} \ln \left(x^{2}+1\right)=\frac{2 x}{x^{2}+1}$
(b) $F(x)=\ln \left(1+x^{2}\right)+C$
(c) $F(x)=\tan ^{-1} x+C$

$$
\frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}}
$$

(iv) $f(x)=\sec x \tan x \quad I=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
(a) $F(x)=\sec ^{2} x+C$
(b) $F(x)=\sec x+C$
$\sin v \frac{d}{d x} \sec x=\sec x \tan x$
(c) $\quad F(x)=\tan x+C$

