Nov. 4 Math 1190 sec. 52 Fall 2016

Section 4.7: Optimization

Let's Do One Together A can in the shape of a right circular cylinder is to have a volume of 128π cubic cm. The material that the top and bottom are made of costs $0.20/\text{cm}^2$ and the material that the lateral surface is made of costs $0.10/\text{cm}^2$. Find the dimensions of the can that minimize the total cost of production.

Let r and h be the radius and height of our cylinder, respectively, Top + Botton $(\pi \ell^2)$ (π^{ℓ^2}) Total are of Top + Botton = ZTT (2 Total lateral surface and = 2mrh Surface ones of con $S = 2\pi r h + 2\pi r^{2}$

The total cost C = (cost of lateral surface) + (cost of top & bottom). The cost for the lateral surface was $0.10/\text{cm}^2$ while the cost for the top and bottom material is $0.20/\text{cm}^2$. The surface area was $S = 2\pi rh + 2\pi r^2$. Which of the following is the cost function?

1

(a)
$$C = 2\pi rh + 2\pi r^2$$

(b) $C = 0.1(2\pi rh) + 0.2(2\pi r^2)$
(c) $C = 0.2(2\pi rh) + 0.1(2\pi r^2)$

(d)
$$C = (0.1)(0.2)(2\pi rh + 2\pi r^2)$$

The cost appears as a function of two variables, r and h. But we need it to be a function of only one variable.

The volume of the can $V = \pi r^2 h$. We are told it must hold 128π cm³. Which of the following could be used to express *C* as a function of *r* alone?

(a) $h = \frac{128}{r}$ (b) $r = \frac{128}{\sqrt{h}}$ $r = \frac{128}{\sqrt{h}}$ $r = \frac{128}{r^2}$ $r^2 = 128 \pi$ $r^2 = 128 \pi$ $r^2 = 128 \pi$ $r^2 = 128 \pi$

$$(c) h = \frac{128}{r^2}$$

We can write the cost function in terms of r as

$$C=\frac{25.6\pi}{r}+0.4\pi r^2$$

Which of the following is the derivative of C with respect to r?

(a)
$$\frac{dC}{dr} = \frac{-25.6\pi}{r^2} + 0.8\pi r$$

(b) $\frac{dC}{dr} = \frac{-25.6\pi + 0.8\pi r}{r^2}$
 $\frac{dC}{dr} = \frac{-25.6\pi + 0.8\pi r}{r^2}$
 $\frac{dC}{dr} = \frac{-25.6\pi + 0.8\pi r}{r^2}$
 $\frac{dC}{dr} = \frac{-25.6\pi + 0.8\pi r}{r^2}$

(c)
$$\frac{dC}{dr} = \frac{-25.6\pi}{r^2} + 0.4\pi r$$

Given that
$$\frac{dC}{dr} = \frac{-25.6\pi}{r^2} + 0.8\pi r$$
,
The critical number(s) of C are
(a) 0 and 32
(b) 0 and $\sqrt[3]{32}$
(c) can't be determined without more information
(d) $\sqrt[3]{32}$
 $C^{1}(r) = 0 \Rightarrow -\frac{25.6}{r^{2}}\pi + 0.8\pi r = 0$
 $0.8\pi r = \frac{25.6\pi}{r^{2}}$
(c) can't be determined without more information
 $r^{3} = \frac{25.6}{0.8}\pi = 32$
 $r = (32)^{1/3}$

We suspect that the optimal size for the radius, the one that minimizes cost is $\sqrt[3]{32}$. We decide to use the second derivative test to check. We find that

$$\frac{d^2C}{dr^2} = \frac{d}{dr} \left(\frac{-25.6\pi}{r^2} + 0.8\pi r \right) = \frac{51.2\pi}{r^3} + 0.8\pi$$

With no computation, we determine that $r = \sqrt[3]{32}$ is a local minimum because

(a) C''(r) is positive for all positive r, so the graph is concave up.

(b) C''(r) is negative for all positive *r*, so the graph is concave up.

(c) C''(r) is positive for all positive *r*, so the graph is concave down.

(d) C''(r) is negative for all positive r, so the graph is concave down.

Since the optimal $r = \sqrt[3]{32}$ and $h = \frac{128}{r^2}$ our recommendation for minimizing the cost is a can with dimensions

(a) radius of $\sqrt[3]{32}$ cm and height $128/\sqrt[3]{32}$ cm

(b) radius of $\sqrt[3]{32}$ cm and height $128/\sqrt[3]{32^2}$ cm

(c) radius of $\sqrt[3]{32}$ cm and height 4 cm

Section 4.8: Antiderivatives; Differential Equations

Definition: A function *F* is called an antiderivative of *f* on an interval *I* if

$$F'(x) = f(x)$$
 for all x in I.

For example, $F(x) = x^2$ is an antiderivative of f(x) = 2x on $(-\infty, \infty)$. Similarly, $G(x) = \tan x + 7$ is an antiderivative of $g(x) = \sec^2 x$ on $(-\pi/2, \pi/2)$.

Theorem: If F is any antiderivative of f on an interval I, then the most general antiderivative of f on I is

$$F(x) + C$$
 where C is an arbitrary constant.

Find the most general antiderivative of *f*.

(i)
$$f(x) = \cos x$$
 $I = (-\infty, \infty)$ $F(x) = \sin x$
So the most general is
 $\sin x + C$
(ii) $f(x) = \frac{1}{x}$ $I = (0, \infty)$ $F(x) = \ln x$
most general is $\ln x + C$

Question: Find the most general antiderivative of *f*.

(iii)
$$f(x) = \frac{1}{1+x^2}$$
 $I = (-\infty, \infty)$

(a)
$$F(x) = \frac{x}{x + x^3/3} + C$$
 Node $\frac{d}{dx} \ln (x^2 + 1) = \frac{2x}{x^2 + 1}$
(b) $F(x) = \ln(1 + x^2) + C$ $\frac{d}{dx} \ln (x^2 + 1) = \frac{1}{1 + x^2}$
(c) $F(x) = \tan^{-1} x + C$ $\frac{d}{dx} \ln^2 x = \frac{1}{1 + x^2}$

(iv)
$$f(x) = \sec x \tan x$$
 $I = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
(a) $F(x) = \sec^2 x + C$
(b) $F(x) = \sec x + C$
(c) $F(x) = \tan x + C$