November 5 MATH 1113 sec. 51 Fall 2018

Section 6.4: Radian Measure

Recall that one *radian* is the measure of a central that subtends an arclength of one in a unit circle.

Converting Between Degrees & Radians Since $360^{\circ} = 2\pi$ rad, we get the following conversion factors: $1^{\circ} = \frac{\pi}{180}$ rad and $1 \text{ rad} = \left(\frac{180}{\pi}\right)^{\circ}$

Remark: If an angle doesn't have the degree symbol $^{\circ}$ next to it, it is assumed to be in radians!

November 2, 2018

1/40

Question

 π

If θ is an angle of -90° , then in radians

(a)
$$\theta = \frac{\pi}{2}$$

(b) $\theta = -\pi$
(c) $\theta = -\frac{2}{\pi}$
(d) $\theta = -\frac{\pi}{2}$

(e) there's no such thing as a negative angle

イロン イロン イヨン イヨン

э

2/40

November 2, 2018

Question

If θ is an angle of measure 2, then

(a)
$$\theta = \frac{\pi}{90}$$

(b) $\theta = \frac{360}{\pi}^{\circ}$
(c) $\theta = \frac{360}{\pi}^{\circ}$
(d) $\theta = \frac{\pi}{90}^{\circ}$

(e) there's no way to know if the given measure is degrees or radians

イロト イポト イヨト イヨト

э

3/40

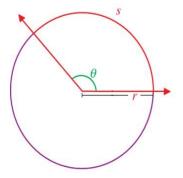
November 2, 2018

Arclength Formula

Given a circle of radius *r*, the length *s* of the arc subtended by the (positive) central angle θ (**in radians**) is given by

 $s = r\theta$.

The area of the resulting sector is $A_{sector} = \frac{1}{2}r^2\theta$.



Motion on a Circle: Angular & Linear Speed

Definition: (angular speed) If an object moves along the arc of a circle through a central angle θ in the time *t*, the angular speed is denoted by ω (lower case omega) and is defined by

$$\omega = \frac{\theta}{t} = \frac{\text{angle moved through}}{\text{time}}. \quad \theta^{\text{index}}$$

Definition: (linear speed) If the circle has radius *r*, then the distance traveled is the arclength $s = r\theta$. The linear speed is denoted by ν (lower case nu) and is defined by

$$\nu = \frac{s}{t} = \frac{r\theta}{t} = r\omega.$$

Note that this is distance (s) per unit time (t).

Example

A flywheel with a 5 inch radius is rotating at a rate of 2 rotations per minute. What is the linear speed of a point on the rim of the wheel in inches per minute? How far does that point on the rim travel in 30 seconds?

So
$$W = \frac{4\pi}{1} \frac{rod}{rin} = 4\pi \frac{1}{rin}$$

Hence
$$V = \Gamma W = \sin \left(4\pi \frac{1}{\min}\right) = 20\pi \frac{\ln \pi}{\min}$$

Distance = rate times time

S = tV 30 sec = 12 min

 $S = \left(\frac{1}{2}\min\right) \cdot \left(20\pi \frac{1}{\min}\right) = 10\pi$ in

November 2, 2018 7 / 40

Question

A wheel with a 30 cm radius rotates at a rate of 3 radians/sec. What is the linear speed of a point on its rim, in cm per second?

(a)
$$\frac{1}{10}$$
 cm/sec
(b) 10 cm/sec
(c) 33 cm/sec
 $\nu = r \omega = 3 \upsilon cm \cdot \frac{1}{5 ec}$
 $\nu = r \omega = 3 \upsilon cm \cdot \frac{1}{5 ec}$
 $\omega = 3 \frac{1}{5 ec}$

November 2, 2018

9/40

(e) can't be determined without more information

Notes on Units

Remember that the formulas for

arclength, sector area, angular speed, & linear speed

are for an angle in **radians**. An angle in degrees must be converted to radians before applying any of these formulas.

Radians as *units***:** We mentioned that radian measure is not a unit in the traditional sense. This is clear from the relationship

$$s = r\theta$$
.

The lengths *s* and *r* would have the same units making

$$\theta = \frac{s}{r}$$
 unitless.

Note then that the units for angular speed are *per time*. For example, *x* per second, or *y* per hour.

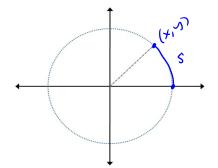
November 2, 2018

10/40

Section 6.5: Trigonometric Functions of a Real Variable and Their Graphs

Let *s* be **any real number**. Then we can equate an arc of the unit circle with *s* and consider the point (x, y) determined by *s*. Since the radius r = 1, the angle $\theta = s$. Hence

$$\sin s = y$$
, $\cos s = x$, and $\tan s = \frac{y}{x}$, when $x \neq 0$.



Properties of Sine and Cosine

We can deduce some properties from the unit circle interpretation. One property is **periodicity**.

Definition: A function *f* is said to be **periodic** if there exists a positive constant *p* such that

$$f(x+p)=f(x)$$

for every x in the domain of f. The smallest such number p is called the **fundamental period** of the function f.

Recall that f(x + p) corresponds to a horizontal shift—*p* units to the left for p > 0. Since f(x + p) = f(x), the shifted graph must be indistinguishable from the unshifted graph.

Graph of a Periodic Function

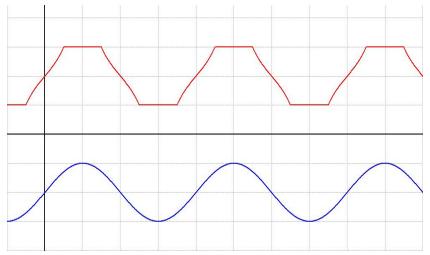


Figure: The profile of a periodic function repeats every *p* units.

November 2, 2018

э

13/40

Periodicity of Sine and Cosine

The sine and cosine function are periodic with fundamental period 2π . That is

 $\cos(s+2\pi) = \cos s$ and $\sin(s+2\pi) = \sin s$ for all real s.

