November 5 MATH 1113 sec. 51 Fall 2018

Section 6.4: Radian Measure

Recall that one radian is the measure of a central that subtends an arclength of one in a unit circle.

Converting Between Degrees \& Radians

Since $360^{\circ}=2 \pi$ rad, we get the following conversion factors:

$$
1^{\circ}=\frac{\pi}{180} \mathrm{rad} \quad \text { and } \quad 1 \mathrm{rad}=\left(\frac{180}{\pi}\right)^{\circ}
$$

Remark: If an angle doesn't have the degree symbol ${ }^{\circ}$ next to it, it is assumed to be in radians!

Question

If θ is an angle of -90°, then in radians
(a) $\theta=\frac{\pi}{2} \quad-90 \cdot \frac{\pi}{180}=-\frac{\pi}{2}$
(b) $\theta=-\pi$
(c) $\theta=-\frac{2}{\pi}$
((d) $\theta=-\frac{\pi}{2}$
(e) there's no such thing as a negative angle

Question

If θ is an angle of measure 2 , then
(a) $\theta=\frac{\pi}{90}$
$\left(2 \cdot \frac{180}{\pi}\right)^{\circ}=\frac{360}{\pi}^{\circ}$
(b) $\theta=\frac{360^{\circ}}{\pi}$
(c) $\theta=\frac{360}{\pi}$
(d) $\theta=\frac{\pi}{90}{ }^{\circ}$
(e) there's no way to know if the given measure is degrees or radians

Arclength Formula

Given a circle of radius r, the length s of the arc subtended by the (positive) central angle θ (in radians) is given by

$$
s=r \theta
$$

The area of the resulting sector is $A_{\text {sector }}=\frac{1}{2} r^{2} \theta$.

Motion on a Circle: Angular \& Linear Speed

Definition: (angular speed) If an object moves along the arc of a circle through a central angle θ in the time t, the angular speed is denoted by ω (lower case omega) and is defined by

$$
\omega=\frac{\theta}{t}=\frac{\text { angle moved through }}{\text { time }} \cdot \theta \operatorname{coc}^{\sin }
$$

Definition: (linear speed) If the circle has radius r, then the distance traveled is the arclength $s=r \theta$. The linear speed is denoted by ν (lower case nu) and is defined by

$$
\nu=\frac{s}{t}=\frac{r \theta}{t}=r \omega .
$$

Note that this is distance (s) per unit time (t).

Example
A flywheel with a 5 inch radius is rotating at a rate of 2 rotations per minute. What is the linear speed of a point on the rim of the wheel in inches per minute? How far does that point on the rim travel in 30 seconds?

$$
\nu=\frac{s}{t}=\frac{r \theta}{t}=r \omega
$$

were given ω as 2 rotations pe minute, we convent this to radions pe minute

1 rotation $=2 \pi$ radians
So 2 rotations $=2(2 \pi)$ radians $=4 \pi$ radions

So $\omega=\frac{4 \pi}{2} \frac{\mathrm{rad}}{\min }=4 \pi \frac{1}{\min }$

Hence

$$
v=r \omega=\sin \left(4 \pi \frac{1}{\min }\right)=20 \pi \frac{\mathrm{in}}{\min }
$$

Distance $=$ rate times time

$$
\begin{aligned}
& S=t \nu \\
& 30 \mathrm{sec}=\frac{1}{2} \mathrm{~min} \\
& S=\left(\frac{1}{2} \min \right) \cdot\left(20 \pi \frac{\text { in }}{\min }\right)=10 \pi \mathrm{in}
\end{aligned}
$$

Question

A wheel with a 30 cm radius rotates at a rate of 3 radians $/ \mathrm{sec}$. What is the linear speed of a point on its rim, in cm per second?
(a) $\frac{1}{10} \mathrm{~cm} / \mathrm{sec}$
(b) $10 \mathrm{~cm} / \mathrm{sec}$
(c) $33 \mathrm{~cm} / \mathrm{sec}$
(d) $90 \mathrm{~cm} / \mathrm{sec}$
(e) can't be determined without more information

Notes on Units

Remember that the formulas for
arclength, sector area, angular speed, \& linear speed
are for an angle in radians. An angle in degrees must be converted to radians before applying any of these formulas.

Radians as units: We mentioned that radian measure is not a unit in the traditional sense. This is clear from the relationship

$$
s=r \theta .
$$

The lengths s and r would have the same units making

$$
\theta=\frac{s}{r} \quad \text { unitless. }
$$

Note then that the units for angular speed are per time. For example, x per second, or y per hour.

Section 6.5: Trigonometric Functions of a Real Variable and Their Graphs

Let s be any real number. Then we can equate an arc of the unit circle with s and consider the point (x, y) determined by s. Since the radius $r=1$, the angle $\theta=s$. Hence
$\sin s=y, \quad \cos s=x, \quad$ and $\quad \tan s=\frac{y}{x}$, when $x \neq 0$.

Properties of Sine and Cosine

We can deduce some properties from the unit circle interpretation. One property is periodicity.

Definition: A function f is said to be periodic if there exists a positive constant p such that

$$
f(x+p)=f(x)
$$

for every x in the domain of f. The smallest such number p is called the fundamental period of the function f.

Recall that $f(x+p)$ corresponds to a horizontal shift-p units to the left for $p>0$. Since $f(x+p)=f(x)$, the shifted graph must be indistinguishable from the unshifted graph.

Graph of a Periodic Function

Figure: The profile of a periodic function repeats every p units.

Periodicity of Sine and Cosine

The sine and cosine function are periodic with fundamental period 2π. That is
$\cos (s+2 \pi)=\cos s$ and $\sin (s+2 \pi)=\sin s \quad$ for all real s.

