November 5 Math 2306 sec. 53 Fall 2018

Section 15: Shift Theorems

Theorem: (translation in s) Suppose $\mathscr{L}\{f(t)\}=F(s)$. Then for any real number a

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}=F(s-a)
$$

For example,

$$
\begin{gathered}
\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}} \Longrightarrow \mathscr{L}\left\{e^{a t} t^{n}\right\}=\frac{n!}{(s-a)^{n+1}} . \\
\mathscr{L}\{\cos (k t)\}=\frac{s}{s^{2}+k^{2}} \Longrightarrow \mathscr{L}\left\{e^{a t} \cos (k t)\right\}=\frac{s-a}{(s-a)^{2}+k^{2}} .
\end{gathered}
$$

Theorem (translation in t)

If $F(s)=\mathscr{L}\{f(t)\}$ and $a>0$, then

$$
\mathscr{L}\{f(t-a) \mathscr{U}(t-a)\}=e^{-a s} F(s) .
$$

In particular,

$$
\mathscr{L}\{\mathscr{U}(t-a)\}=\frac{e^{-a s}}{s} .
$$

As another example,

$$
\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}} \quad \Longrightarrow \quad \mathscr{L}\left\{(t-a)^{n} \mathscr{U}(t-a)\right\}=\frac{n!e^{-a s}}{s^{n+1}} .
$$

A Couple of Useful Results
Another formulation of this translation theorem is
(1)

$$
\begin{gathered}
\mathscr{L}\{g(t) \mathscr{U}(t-a)\}=e^{-a s} \mathscr{L}\{g(t+a)\} . \\
g(t)=g((t+a)-a)
\end{gathered}
$$

Example: Find $\mathscr{L}\left\{\cos t \mathscr{U}\left(t-\frac{\pi}{2}\right)\right\}=e^{-\frac{\pi}{2} \delta} \mathscr{L}\left\{\cos \left(t+\frac{\pi}{2}\right)\right\}$

Note

$$
\begin{aligned}
\cos \left(t+\frac{\pi}{2}\right) & =\cos t \cos \pi / 2-\sin t \sin \pi / 2 \\
& =\cos t \cdot 0-\sin t \cdot 1 \\
& =-\sin t
\end{aligned}
$$

So

$$
\begin{aligned}
\mathcal{L}\{\cos t u(t-\pi / 2)\} & =e^{-\pi / 2 s} \mathcal{L}\{\cos (t+\pi / 2)\} \\
& =e^{-\pi / 2 s} \mathcal{L}\{-\sin t\} \\
& =-e^{-\frac{\pi}{2} s}\left(\frac{1}{s^{2}+1^{2}}\right) \\
& =\frac{-e^{-\frac{\pi}{2} s}}{s^{2}+1}
\end{aligned}
$$

A Couple of Useful Results The inverse form of this translation theorem is
(2) $\mathscr{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) \mathscr{U}(t-a)$.

Example: Find $\mathscr{L}^{-1}\left\{\frac{e^{-2 s}}{s(s+1)}\right\}$
we reed to find $f(t)=\mathscr{L}^{-1}\left\{\frac{1}{s(s+1)}\right\}$
we will do partied fraction decomp

$$
\frac{1}{s(s+1)}=\frac{A}{s}+\frac{B}{s+1}
$$

$$
\left.\begin{array}{rl}
1 & =A(s+1)+B s \\
& s=0 \quad 1=A \\
s=-1 & 1=-B
\end{array}\right\} \Rightarrow \quad A=1 \text { no } B=-1
$$

$$
\begin{aligned}
\mathcal{z}^{-1}\left\{\frac{e^{-2 s}}{s(s+1)}\right\} & =f(t-2) u(t-2) \\
& =\left(1-e^{-(t-2)}\right) u(t-2)
\end{aligned}
$$

Section 16: Laplace Transforms of Derivatives and IVPs

Suppose f has a Laplace transform and that f is differentiable on $[0, \infty)$. Obtain an expression for the Laplace tranform of $f^{\prime}(t)$. (Assume f is of exponential order c for some c.)

$$
\begin{array}{ll}
\mathscr{L}\left\{f^{\prime}(t)\right\}=\int_{0}^{\infty} e^{-s t} f^{\prime}(t) d t & \text { Integrate by }
\end{array} \begin{array}{ll}
\text { parts } \\
u=e^{-s t} & d u=-s e^{-s t} d t \\
=\left.f(t) e^{-s t}\right|_{0} ^{\infty}-\left(\int_{0}^{\infty}-s e^{-s t} f(t) d t\right) & v=f(t) \\
d v=f^{\prime}(t) d t
\end{array}
$$

$f(t) e^{-s t} \rightarrow 0$ as $t \rightarrow \infty$ for sufficiently lounges

$$
\begin{aligned}
& =0-f(0) e^{0}+s \int_{0}^{\infty} e^{-s t} f(t) d t \\
& =-f(0)+s \mathcal{L}\{f(t)\}
\end{aligned}
$$

If we call $\mathscr{L}\{f \mid t)\}=F(s)$, then

$$
\mathscr{L}\left\{f^{\prime}(t)\right\}=s F(s)-f(0)
$$

Transforms of Derivatives

If $\mathscr{L}\{f(t)\}=F(s)$, we have $\mathscr{L}\left\{f^{\prime}(t)\right\}=s F(s)-f(0)$. We can use this relationship recursively to obtain Laplace transforms for higher derivatives of f.

For example
$\mathscr{L}\left\{f^{\prime \prime}(t)\right\}=s \mathscr{L}\left\{f^{\prime}(t)\right\}-f^{\prime}(0)$

$$
\begin{aligned}
& =s(s F(s)-f(0))-f^{\prime}(0) \\
& =s^{2} F(s)-s f(0)-f^{\prime}(0)
\end{aligned}
$$

Transforms of Derivatives

For $y=y(t)$ defined on $[0, \infty)$ having derivatives $y^{\prime}, y^{\prime \prime}$ and so forth, if

$$
\mathscr{L}\{y(t)\}=Y(s)
$$

then

$$
\begin{gathered}
\mathscr{L}\left\{\frac{d y}{d t}\right\}=s Y(s)-y(0) \\
\mathscr{L}\left\{\frac{d^{2} y}{d t^{2}}\right\}=s^{2} Y(s)-s y(0)-y^{\prime}(0) \\
\vdots \\
\mathscr{L}\left\{\frac{d^{n} y}{d t^{n}}\right\}=s^{n} Y(s)-s^{n-1} y(0)-s^{n-2} y^{\prime}(0)-\cdots-y^{(n-1)}(0)
\end{gathered}
$$

Differential Equation
For constants a, b, and c, take the Laplace transform of both sides of the equation

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(t), \quad y(0)=y_{0}, \quad y^{\prime}(0)=y_{1}
$$

Let $\mathscr{L}\{y(t)\}=Y(s)$ and $\mathscr{L}\{g(t)\}=G(s)$
Tale transform of both sides

$$
\begin{aligned}
& \mathcal{L}\left\{a y^{\prime \prime}+b y^{\prime}+c y\right\}=\mathscr{L}\{g\} \\
& a \mathcal{L}\left\{y^{\prime \prime}\right\}+b \underline{\mathcal{L}\left\{y^{\prime}\right\}}+c \mathcal{L} \underline{\{y\}}=G(s) \\
& a\left(s^{2} Y(s)-s y(0)-y^{\prime}(0)\right)+b(\underline{(s(s)-y(0)})+c Y(s)=G(s)
\end{aligned}
$$

$U_{(s)}$ is the Laplace transform of the solution to the IVP with $y(0)=y_{0}$ and $y^{\prime}(0)=1$.

Lets isolate $Y(s)$.

$$
\begin{aligned}
& a s^{2} Y(s)-a s y(0)-a y^{1}(0)+b s Y(s)-b y(0)+c Y(s)=G(s) \\
& a s^{2} Y(s)-a s y_{0}-a y_{1}+b s Y(s)-b y_{0}+c Y(s)=G(s) \\
& a s^{2} Y(s)+b s Y(s)+c Y(s)=a y_{0} s+a y_{1}+b y_{0}+G(s) \\
& \left(a s^{2}+b s+c\right) Y_{(s)}=a y_{0} s+a y_{1}+b y_{0}+G(s)
\end{aligned}
$$

$$
Y(s)=\frac{a y_{0} s+a y_{1}+b y_{0}}{a s^{2}+b s+c}+\frac{G(s)}{a s^{2}+b s+c}
$$

Note that $a s^{2}+b s+c$ is the Characteristic polynonid for the original ODE

And the solution to the IVP

$$
y(t)=\mathscr{L}^{-1}\{Y(s)\}
$$

Solving IVPs

Figure: We use the Laplace transform to turn our DE into an algebraic equation. Solve this transformed equation, and then transform back.

General Form

We get

$$
Y(s)=\frac{Q(s)}{P(s)}+\frac{G(s)}{P(s)}
$$

where Q is a polynomial with coefficients determined by the initial conditions, G is the Laplace transform of $g(t)$ and P is the characteristic polynomial of the original equation.
$\mathscr{L}^{-1}\left\{\frac{Q(s)}{P(s)}\right\} \quad$ is called the zero input response,
and
$\mathscr{L}^{-1}\left\{\frac{G(s)}{P(s)}\right\} \quad$ is called the zero state response.

