Nov. 7 Math 1190 sec. 51 Fall 2016

Section 4.8: Antiderivatives; Differential Equations

Definition: A function F is called an antiderivative of f on an interval I if

$$
F^{\prime}(x)=f(x) \quad \text { for all } x \text { in } I .
$$

For example, $F(x)=x^{2}$ is an antiderivative of $f(x)=2 x$ on $(-\infty, \infty)$. Similarly, $G(x)=\tan x+7$ is an antiderivative of $g(x)=\sec ^{2} x$ on ($-\pi / 2, \pi / 2$).

Theorem: If F is any antiderivative of f on an interval I, then the most general antiderivative of f on $/$ is

$$
F(x)+C \text { where } C \text { is an arbitrary constant. }
$$

Find the most general antiderivative of f.
(i) $f(x)=\cos x \quad I=(-\infty, \infty)$

- Find one example of an antidenivative, then add C.

$$
F(x)=\frac{\sin x \sin u \quad \frac{d}{d x} \sin x=\cos x}{\sin x+C}
$$

(ii) $\quad f(x)=\frac{1}{x} \quad I=(0, \infty)$

Note $\frac{d}{d x} \ln x=\frac{1}{x}$

$$
\ln x+C
$$

Question: Find the most general antiderivative of f.
(iii) $\quad f(x)=\frac{1}{1+x^{2}} \quad I=(-\infty, \infty)$
(a) $\quad F(x)=\frac{x}{x+x^{3} / 3}+C$

$$
\begin{aligned}
& \frac{d}{d x} \ln \left(1+x^{2}\right)=\frac{1}{1+x^{2}} \cdot 2 x=\frac{2 x}{1+x^{2}} \\
& \frac{d}{d x}\left(\tan ^{-1} x+c\right)=\frac{1}{1+x^{2}}+0=\frac{1}{1+x^{2}}
\end{aligned}
$$

(b) $F(x)=\ln \left(1+x^{2}\right)+C$
(c) $F(x)=\tan ^{-1} x+C$
(iv) $f(x)=\sec x \tan x \quad I=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
(a) $F(x)=\sec ^{2} x+C \quad$ Since $\frac{d}{d x} \sec x=\operatorname{Sec} x \tan x$
(b) $F(x)=\sec x+C$
(c) $\quad F(x)=\tan x+C$

Find the most general antiderivative of

$$
f(x)=x^{n}, \quad \text { where } n=1,2,3, \ldots
$$

This is a power function, so well think about the power rule.

To end up with power n, we must start with power $n+1$.
lex's guess that $F(x)=A x^{n+1}$ for constant A.
we need $F^{\prime}(x)=x^{n}$. We have

$$
F^{\prime}(x)=A(n+1) x^{n+1-1}=A(n+1) x^{n}
$$

Thece motch if $A(n+1)=1 \Rightarrow A=\frac{1}{n+1}$.
So $F(x)=\frac{1}{n+1} x^{n+1}=\frac{x^{n+1}}{n+1}$
The most senead antldenivative is

$$
\frac{x^{n+1}}{n+1}+C
$$

Some general results*:

(See the table on page 330 in Sullivan \& Miranda for a more comprehensive list.)

Function	Particular Antiderivative	Function	Particular Antiderivative
$c f(x)$	$c F(x)$	$\cos x$	$\sin x$
$f(x)+g(x)$	$F(x)+G(x)$	$\sin x$	$-\cos x$
$x^{n}, n \neq-1$	$\frac{x^{n+1}}{n+1}$	$\sec ^{2} x$	$\tan x$
$\frac{1}{x}$	$\ln \|x\|$	$\csc x \cot x$	$-\csc x$
$\frac{1}{x^{2}+1}$	$\tan ^{-1} x$	$\frac{1}{\sqrt{1-x^{2}}}$	$\sin ^{-1} x$

[^0]Example
Find the most general antiderivative of $h(x)=x \sqrt{x}$ on $(0, \infty)$.

$$
\begin{array}{cc}
h(x)=x \sqrt{x}=x \cdot x^{1 / 2}=x^{3 / 2} & \text { Power rule } \\
x^{n} \rightarrow \frac{x^{n+1}}{n+1} \\
H(x)=\frac{x^{\frac{3}{2}+1}}{\frac{3}{2}+1}+C \\
H(x)=\frac{2}{5} x^{5 / 2}+C \\
\operatorname{cor}^{r^{2 / 2}} H^{\prime}(x)=\frac{2}{5}\left(\frac{5}{2} x^{3 / 2-1}\right)+0=\frac{2}{5} \cdot \frac{5}{2} x^{3 / 2}=x^{3 / 2}=x \sqrt{x}
\end{array}
$$

Example
Determine the function $H(x)$ that satisfies the following conditions

$$
H^{\prime}(x)=x \sqrt{x}, \quad \text { for all } x>0, \text { and } H(1)=0
$$

From the previous example, we know that

$$
\begin{gathered}
H(x)=\frac{2}{5} x^{s / 2}+C . \\
H(1)=\frac{2}{5}(1)^{s / 2}+C=0 \Rightarrow \frac{2}{5}+C=0 \Rightarrow C=\frac{-2}{5}
\end{gathered}
$$

The solution to the whole problem, both conditions, is

$$
H(x)=\frac{2}{5} x^{5 / 2}-\frac{2}{5}
$$

Example
A particle moves along the x-axis so that its acceleration at time t is given by

$$
a(t)=12 t-2 \mathrm{~m} / \mathrm{sec}^{2}
$$

At time $t=0$, the velocity v and position s of the particle are known to be

$$
v(0)=3 \mathrm{~m} / \mathrm{sec}, \text { and } \quad s(0)=4 \mathrm{~m} .
$$

Find the position $s(t)$ of the particle for all $t>0$.
$a(t)=v^{\prime}(t)$ to find v, we need on ontiderivetue of a.

$$
v(t)=12 \frac{t^{1+1}}{1+1}-2 t+C=6 t^{2}-2 t+C
$$

Double check $v^{\prime}(t)=6(2 t)-2+0=12 t-2$
$V(t)=6 t^{2}-2 t+C$ and $V(0)=3 \mathrm{~m} / \mathrm{sec}$.

$$
v(0)=6 \cdot 0^{2}-2 \cdot 0+C=3 \quad \Rightarrow \quad c=3
$$

The velocity $v(t)=6 t^{2}-2 t+3$

Note that $v(t)=S^{\prime}(t)$ for position s.
we take on antidenivative to find S.

$$
s(t)=6 \frac{t^{2+1}}{2+1}-2 \frac{t^{1+1}}{1+1}+3 t+C
$$

$$
s(t)=2 t^{3}-t^{2}+3 t+C
$$

Double check

$$
s^{\prime}(t)=2\left(3 t^{2}\right)-2 t+3+0=6 t^{2}-2 t+3
$$

Since $s \cos =4$ was given

$$
s(0)=2 \cdot 0^{3}-0^{2}+3 \cdot 0+c=4 \Rightarrow c=4
$$

Ow position e time t is

$$
s(t)=2 t^{3}-t^{2}+3 t+4
$$

Example

A differential equation is an equation that involves the derivatives) of an unknown function. Solving such an equation would mean finding such an unknown function. Additional conditions are typically included in problems involving differential equations.

Solve the differential equation subject to the given initial conditions.

$$
\frac{d^{2} y}{d x^{2}}=\cos x+2, \quad y(0)=0, \quad y^{\prime}(0)=-1
$$

we con get $y^{\prime}(x)$ by taking on ontidarivatue.

$$
y^{\prime}(x)=\sin x+2 x+C
$$

$$
\begin{aligned}
& \begin{array}{r}
y^{\prime}\left(0=-1 \Rightarrow y^{\prime}(0)=\sin (0)+2 \cdot 0+C=-1\right. \\
c=-1
\end{array} \\
& y^{\prime}(x)=\sin x+2 x-1
\end{aligned}
$$

Take another antiderivative.

$$
\begin{aligned}
y(x) & =-\cos x+2 \frac{x^{1+1}}{1+1}-x+C \\
& =-\cos x+x^{2}-x+C
\end{aligned}
$$

Chede

$$
y^{\prime}(x)=-(-\sin x)+2 x-1+0=\sin x+2 x-1
$$

$$
\begin{aligned}
& y(x)=-\cos x+x^{2}-x+C, y(0)=0 \\
& y(0)=-\cos 0+0^{2}-0+C=0 \\
& -1+C=0 \Rightarrow C=1
\end{aligned}
$$

The solution is

$$
y(x)=-\cos x+x^{2}-x+1
$$

Question

Solve the differential equation subject to the initial condition.

$$
\frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}, \quad y(0)=-\frac{1}{2}
$$

(a) $y=\sin x-\frac{1}{2}$
(b) $y=\sqrt{1-x^{2}}-\frac{3}{2}$

$$
\frac{d}{d x}\left(\sin ^{-1} x-\frac{1}{2}\right)=\frac{1}{\sqrt{1-x^{2}}}-0
$$

(C)) $y=\sin ^{-1} x-\frac{1}{2}$
$=\frac{1}{\sqrt{1-x^{2}}}$

Section 5.1: Area (under the graph of a nonnegative function)

We will investigate the area enclosed by the graph of a function f. We'll make the following assumptions (for now):

- f is continuous on the interval $[a, b]$, and
- f is nonnegative, i.e $f(x) \geq 0$, on $[a, b]$.

Our Goal: Find the area of such a region.

Figure: Region under a positive curve $y=f(x)$ on an interval $[a, b]$.

Figure: We could approximate the area by filling the space with rectangles.

Figure: We could approximate the area by filling the space with rectangles.

Figure: Some choices as to how to define the heights.

Approximating Area Using Rectangles

We can experiment with

- Which points to use for the heights (left, right, middle, other....)
- How many rectangles we use
to try to get a good approximation.

Definition: We will define the true area to be value we obtain taking the limit as the number of rectangles goes to $+\infty$.

[^0]: *We'll use the term particular antiderivative to refer to any antiderivative that has no arbitrary constant in it.

