November 7 Math 3260 sec. 57 Fall 2017

Section 5.1: Eigenvectors and Eigenvalues

Definition: Let A be an $n \times n$ matrix. A nonzero vector **x** such that

$$A\mathbf{x} = \lambda \mathbf{x}$$

for some scalar λ is called an **eigenvector** of the matrix A.

A scalar λ such that there exists a nonzero vector \mathbf{x} satisfying $A\mathbf{x} = \lambda \mathbf{x}$ is called an **eigenvalue** of the matrix A. Such a nonzero vector \mathbf{x} is an eigenvector corresponding to λ .

Eigenspace

Definition: Let A be an $n \times n$ matrix and λ and eigenvalue of A. The set of all eigenvectors corresponding to λ —i.e. the set

$$\{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} \neq \mathbf{0} \text{ and } A\mathbf{x} = \lambda \mathbf{x}\},$$

is called the **eigenspace of** *A* **corresponding to** λ .

Remark: When combined with the zero vector, the eigenspace is the same as the null space of the matrix $A - \lambda I$. It follows that the eigenspace (along with $\mathbf{0}$) is a subspace of \mathbb{R}^n .

Matrices with Nice Structure

Theorem: If A is an $n \times n$ triangular matrix, then the eigenvalues of A are its diagonal elements.

Find the eigenvalues of the matrix
$$A = \begin{bmatrix} 3 & 0 & 0 \\ -2 & 2 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

The eigenvaluer one
$$\lambda_1 = 3$$
, $\lambda_2 = 2$, $\lambda_{3,3} = 1$

Example

Find at least one eigenvector for each eigenvalue of the matrix

$$A = \begin{bmatrix} 3 & 0 & 0 \\ -2 & 2 & 0 \\ -1 & 0 & 1 \end{bmatrix}.$$
For $\lambda_1 = 3$, $A - 3I = \begin{bmatrix} 6 & 0 & 0 \\ -2 & -1 & 0 \\ -1 & 0 & -2 \end{bmatrix}$

To solve $(A - 3I)\pi = 0$

The formula of the solve $(A - 3I)\pi = 0$

The formula of the solve $(A - 3I)\pi = 0$

The formula of the solve $(A - 3I)\pi = 0$

The formula of the solve $(A - 3I)\pi = 0$

The formula of the solve $(A - 3I)\pi = 0$

The formula of the solve $(A - 3I)\pi = 0$

The formula of the solve $(A - 3I)\pi = 0$

The formula of the solve $(A - 3I)\pi = 0$

The formula of the solve $(A - 3I)\pi = 0$

The formula of the solve $(A - 3I)\pi = 0$

The formula of the solve $(A - 3I)\pi = 0$

The formula of the solve $(A - 3I)\pi = 0$

The formula of the solve $(A - 3I)\pi = 0$

The formula of the solve $(A - 3I)\pi = 0$

The formula of the solve $(A - 3I)\pi = 0$

The formula of the solve $(A - 3I)\pi = 0$

The formula of $(A - 3I)\pi = 0$

The formula of

$$\vec{x}' : \vec{x}^3 \begin{bmatrix} -5 \\ 4 \\ 1 \end{bmatrix}$$

For
$$\lambda_2 = 2$$
 A-2 $\Gamma = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 0 & 0 \\ -1 & 0 & -1 \end{bmatrix}$

$$\operatorname{rref} \left(A - 2 \mathcal{I} \right) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{array}{c} X_1 = 0 \\ X_2 = 0 \\ X_3 = 0 \end{array}$$

$$\vec{\chi}_z = \chi_z \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

For
$$\lambda_3 = 1$$
, $A - 1I = \begin{bmatrix} 2 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$

$$\text{ref} (A - L) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{array}{c} X_1 = 0 \\ X_2 = 0 \\ X_3 - \text{free} \end{array}$$

$$\vec{\chi}_3 = \chi_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
A set of eigenvectors is $\left\{ \begin{bmatrix} -2 \\ 4 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$.

4 D > 4 D > 4 E > 4 E > E 9 Q C

Example Continued....

Demonstrate that the eigenvectors found are linearly independent.

Example

Suppose $\lambda = 0$ is an eigenvalue¹ of a matrix A. Argue that A is not invertible.

As an eigenvalue, there is a nonzero vector \vec{x} such that $A\vec{x} = \lambda\vec{x}$. If $\lambda = 0$, the equation is hono seneous $A\vec{x} = \vec{0}$.

Since there is a nontrivial solution to the honogeneous equation, A is singular - i.e., not invertible.

¹Eigenvectors must be nonzero vectors, but it is perfectly legitimate to have a zero eigenvalue!

Theorems

Theorem: A square matrix *A* is invertible if and only if zero is **not** and eigenvalue.

Theorem: If $\mathbf{v}_1, \dots, \mathbf{v}_p$ are eigenvectors of a matrix A corresponding to distinct eigenvalues, $\lambda_1, \dots, \lambda_p$, then the set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is linearly independent.

Linear Independence

Show that if \mathbf{v}_1 and \mathbf{v}_2 are eigenvectors of a matrix A with corresponding eigenvalues λ_1 and λ_2 where $\lambda_1 \neq \lambda_2$, then $\{\mathbf{v}_1, \mathbf{v}_2\}$ is linearly independent.

Conside the equotion
$$C_1\vec{V}_1 + C_2\vec{V}_2 = \vec{0}$$
.
Suppose $\lambda_1 \neq 0$. Multiply λ_1 .
 $C_1\lambda_1\vec{V}_1 + C_2\lambda_1\vec{V}_2 = \vec{0}$. eq 1.
Multiply A
 $A(c_1\vec{V}_1 + c_2\vec{V}_2) = A\vec{0} = \vec{0}$
 $C_1A\vec{V}_1 + C_2A\vec{V}_2 = \vec{0}$ eq 2.

11/30

Subtract egy 2 from egy 2

$$-\frac{c_1 \lambda_1 \vec{v}_1 + c_2 \lambda_2 \vec{v}_2 = \vec{0}}{(\lambda_1 - \lambda_2) c_2 \vec{v}_2 = \vec{0}}$$

 $\sqrt{2}$ to os on $\sqrt{2}$ ector $\sqrt{2}$ $\sqrt{2}$

The original equation becomes

$$C_{1}\vec{v}_{1} + \vec{0} = \vec{0}$$
 $C_{1}\vec{v}_{1} = \vec{0}$

Vito as an eigenvector. Hence (1=0.

Since $C_1 = C_2 = 0$ has to hold, \vec{V}_1 and \vec{V}_2 are linearly independent,

Section 5.2: The Characteristic Equation

Find the eigenvalues of $A = \begin{bmatrix} 2 & 3 \\ 3 & -6 \end{bmatrix}$ by appealing to the fact that the equation $A\mathbf{x} = \lambda I_2 \mathbf{x}$ can be restated as:

Find a nontrivial solution of the homogeneous equation

$$(A - \lambda I_2)\mathbf{x} = \mathbf{0}.$$

A nontrivial solution requires A-XI is singular. This means its determinant is 320.

$$A - \lambda I = \begin{bmatrix} 2 & 3 \\ 3 & -6 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 3 \\ 3 & -6 - \lambda \end{bmatrix}$$

$$0 = \det (A - \lambda I) = (2 - \lambda)(-6 - \lambda) - 3.3$$

$$= \lambda^{2} + 4\lambda - 12 - 9$$

$$0 = \lambda^{2} + 4\lambda - 21$$

$$0 = (\lambda + 7)(\lambda - 3)$$

The two solutions are 1; -7 and 2=3.

Theorem (adding more to the invertible matrix theorem)

The $n \times n$ matrix A is invertible if and only if²

- (s) The number 0 is not an eigenvalue of A.
- (t) The determinant of A is nonzero.

²This is nothing new, we're just adding to the list.

Characteristic Equation

Definition: For $n \times n$ matrix A, the expression

$$det(A - \lambda I)$$

is an n^{th} degree polynomial in λ . It is called the **characteristic polynomial** of A.

Definition:The equation

$$\det(A - \lambda I) = 0$$

is called the **characteristic equation** of *A*.

Theorem: The scalar λ is an eigenvalue of the matrix A if and only if it is a root of the characteristic equation.

Example

Find the characteristic equation for the matrix and identify all of its eigenvalues.

$$A = \begin{bmatrix} 5 & -2 & 6 & -1 \\ 0 & 3 & -8 & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad A - \lambda T^{-2} \quad \begin{bmatrix} 5 - \lambda & -2 & \lambda & -1 \\ 0 & 3 - \lambda & -8 & 0 \\ 0 & 0 & 5 - \lambda & 4 \\ 0 & 0 & 0 & 1 - \lambda \end{bmatrix}$$

det
$$(A-\lambda T)$$
: $(s-\lambda)(3-\lambda)(s-\lambda)(1-\lambda)$

$$= (s-\lambda)^{2}(3-\lambda)(1-\lambda)$$
This is the characteristic polynomial.

The characteristic equation is

$$(\zeta-\lambda)^2(3-\lambda)(1-\lambda)=0.$$

The eigen values am 5,3, and 1.

Multiplicities

Definition: The **algebraic multiplicity** of an eigenvalue is its multiplicity as a root of the characteristic equation. The **geometric multiplicity** is the dimension of its corresponding eigenspace.

Example Find the algebraic and geometric multiplicity of the

$$A = \left[\begin{array}{ccccc} 5 & -2 & 6 & -1 \\ 0 & 3 & -8 & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

eigenvalue
$$\lambda = 5$$
 of

$$A = \begin{bmatrix} 5 & -2 & 6 & -1 \\ 0 & 3 & -8 & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(har, eqn
$$(\lambda - 5)^{2} (\lambda - 3) (\lambda - 1) = 0$$

$$(\lambda - 5)^{2} (\lambda - 3) (\lambda - 1) = 0$$
The algebraic states and good an

$$A - SI = \begin{cases} 0 & -2 & 6 & -1 \\ 0 & -2 & -8 & 0 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & -4 \end{cases} \xrightarrow{\text{ret}} \begin{cases} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{cases}$$

$$X_1$$
 - free $X_2 = X_3 = X_4 = 0$
eigen vectors have the form $X = X_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$
A basis for the eigen space is $\{\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}\}$.

The geometric multiplicity of S is 1.