November 7 Math 3260 sec. 58 Fall 2017

Section 5.1: Eigenvectors and Eigenvalues
Definition: Let A be an n x n matrix. A nonzero vector x such that
AX = \X

for some scalar ) is called an eigenvector of the matrix A.

A scalar )\ such that there exists a nonzero vector x satisfying Ax = Ax
is called an eigenvalue of the matrix A. Such a nonzero vector x is an
eigenvector corresponding to \.
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Eigenspace

Definition: Let A be an n x n matrix and A and eigenvalue of A. The
set of all eigenvectors corresponding to A—i.e. the set

{x € R" | x # 0 and Ax = Ax},

is called the eigenspace of A corresponding to \.

Remark: When combined with the zero vector, the eigenspace is the
same as the null space of the matrix A — Al. It follows that the
eigenspace (along with 0) is a subspace of R".
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Matrices with Nice Structure

Theorem: If Ais an n x ntriangular matrix, then the eigenvalues of A
are its diagonal elements.
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Example

Find at least one eigenvector for each eigenvalue of the matrix
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Example Continued....

Demonstrate that the eigenvectors found are linearly independent.
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Theorems

Theorem: A square matrix A is invertible if and only if zero is not and
eigenvalue.

Theorem: If vq, ..., v, are eigenvectors of a matrix A corresponding to
distinct eigenvalues, A4, ..., )‘P’ then the set {vy,...,vp} is linearly
independent.
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Linear Independence

Show that if vi and v, are eigenvectors of a matrix A with

corresponding eigenvalues Ay and A where A1 # Az, then {vy,Vo} is
linearly independent.
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Section 5.2: The Characteristic Equation

Find the eigenvalues of A = [ g 6

the equation Ax = Ahbx can be restated as:

Find a nontrivial solution of the homogeneous equation
(A= Ab)x =0.
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Theorem (adding more to the invertible matrix
theorem)

The n x n matrix A is invertible if and only if'
(s) The number 0 is not an eigenvalue of A.

(t) The determinant of A is nonzero.

"This is nothing new, we're just adding to the list.
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Characteristic Equation
Definition: For n x n matrix A, the expression
det(A — \/)

is an n degree polynomial in \. It is called the characteristic
polynomial of A.

Definition:The equation
det(A—A)=0
is called the characteristic equation of A.

Theorem: The scalar ) is an eigenvalue of the matrix A if and only if it
is a root of the characteristic equation.
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Example

Find the characteristic equation for the matrix and identify all of its
eigenvalues.
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Multiplicities

Definition: The algebraic multiplicity of an eigenvalue is its
multiplicity as a root of the characteristic equation. The geometric
multiplicity is the dimension of its corresponding eigenspace.

Example Find the algebraic and geometric multiplicity of the
eigenvalue \ = 5 of .
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