November 7 Math 3260 sec. 58 Fall 2017

Section 5.1: Eigenvectors and Eigenvalues

Definition: Let A be an $n \times n$ matrix. A nonzero vector \mathbf{x} such that

$$
A \mathbf{x}=\lambda \mathbf{x}
$$

for some scalar λ is called an eigenvector of the matrix A.
A scalar λ such that there exists a nonzero vector \mathbf{x} satisfying $A \mathbf{x}=\lambda \mathbf{x}$ is called an eigenvalue of the matrix A. Such a nonzero vector \mathbf{x} is an eigenvector corresponding to λ.

Eigenspace

Definition: Let A be an $n \times n$ matrix and λ and eigenvalue of A. The set of all eigenvectors corresponding to λ-i.e. the set

$$
\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{x} \neq \mathbf{0} \text { and } A \mathbf{x}=\lambda \mathbf{x}\right\}
$$

is called the eigenspace of A corresponding to λ.

Remark: When combined with the zero vector, the eigenspace is the same as the null space of the matrix $A-\lambda I$. It follows that the eigenspace (along with 0) is a subspace of \mathbb{R}^{n}.

Matrices with Nice Structure

Theorem: If A is an $n \times n$ triangular matrix, then the eigenvalues of A are its diagonal elements.

Find the eigenvalues of the matrix $A=\left[\begin{array}{ccc}3 & 0 & 0 \\ -2 & 2 & 0 \\ -1 & 0 & 1\end{array}\right]$
The eigenvalues are

$$
\lambda_{1}=3, \quad \lambda_{2}=2, \quad \lambda_{3}=1
$$

Example

Find at least one eigenvector for each eigenvalue of the matrix

$$
A=\left[\begin{array}{ccc}
3 & 0 & 0 \\
-2 & 2 & 0 \\
-1 & 0 & 1
\end{array}\right]
$$

For $\lambda_{1}=3 \quad A-3 I=\left[\begin{array}{ccc}0 & 0 & 0 \\ -2 & -1 & 0 \\ -1 & 0 & -2\end{array}\right]$
To solve $(A-3 I) \vec{x}=\overrightarrow{0}$

$$
\operatorname{rret}(A-3 I)=\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -4 \\
0 & 0 & 0
\end{array}\right] \begin{aligned}
& x_{1}=-2 x_{3} \\
& x_{2}=4 x_{3} \\
& x_{3}-\text { free }
\end{aligned}
$$

The essen vectors look like $\vec{x}_{1}=x_{3}\left[\begin{array}{c}-2 \\ 4 \\ 1\end{array}\right]$
For $\lambda_{2}=2$

$$
\begin{gathered}
A \cdot 2 I=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 0 & 0 \\
-1 & 0 & -1
\end{array}\right] \\
\operatorname{rret}(A-2 I)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \begin{array}{l}
x_{1}=0 \\
x_{3}=0 \\
x_{2} \text {-free }
\end{array}
\end{gathered}
$$

The elver vectors an

$$
\dot{x}_{2}=x_{2}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

For $\lambda_{3}=1, \quad A-I=\left[\begin{array}{ccc}2 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & 0 & 0\end{array}\right]$

$$
\operatorname{rret}(A-I)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \begin{aligned}
& x_{1}=0 \\
& x_{2}=0 \\
& x_{3} \text {-free }
\end{aligned}
$$

so $\quad \vec{x}_{3}=x_{3}\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
A set of eigenvectors is $\left\{\left[\begin{array}{c}-2 \\ 4 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$.

Example Continued....
Demonstrate that the eigenvectors found are linearly independent.
With 3 vectas in \mathbb{R}^{3}, we cm use the square $\operatorname{motrix} \quad B=\left[\begin{array}{lll}\vec{x}_{1} & \vec{x}_{2} & \vec{x}_{3}\end{array}\right]$.

$$
B=\left[\begin{array}{ccc}
-2 & 0 & 0 \\
4 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] \quad \operatorname{det}(B)=-2 \neq 0
$$

Bis ronsingular, its columns are linearly, independent.

Theorems

Theorem: A square matrix A is invertible if and only if zero is not and eigenvalue.

Theorem: If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ are eigenvectors of a matrix A corresponding to distinct eigenvalues, $\lambda_{1}, \ldots, \lambda_{p}$, then the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is linearly independent.

Linear Independence
Show that if \mathbf{v}_{1} and \mathbf{v}_{2} are eigenvectors of a matrix A with corresponding eigenvalues λ_{1} and λ_{2} where $\lambda_{1} \neq \lambda_{2}$, then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is linearly independent.

Consider $c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}=\overrightarrow{0}^{\text {. }}$
Form on equation by muetipling by λ_{1}.

$$
c_{1} \lambda_{1} \vec{v}_{1}+c_{2} \lambda_{1} \vec{v}_{2}=\overrightarrow{0} \quad \text { eqn } 1
$$

Form on equation by multiplying by A.

$$
\begin{aligned}
& A\left(c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}\right)=A \dot{0}=\overrightarrow{0} \\
& c_{1} A \vec{v}_{1}+c_{2} A \vec{v}_{2}=\overrightarrow{0}
\end{aligned}
$$

$$
\begin{equation*}
c_{1} \lambda_{1} \vec{v}_{1}+c_{2} \lambda_{2} \vec{v}_{2}=\overrightarrow{0} \tag{egn}
\end{equation*}
$$

Subtract eqn 2 fron eqn 1

$$
\begin{aligned}
& c_{1} \lambda_{1} \vec{v}_{1}+c_{2} \lambda_{1} \vec{v}_{2}=\overrightarrow{0} \\
& c_{1} \lambda_{1} \vec{v}_{1}+c_{2} \lambda_{2} \vec{v}_{2}=\overrightarrow{0} \\
& \left(\lambda_{1}-\lambda_{2}\right) c_{2} \vec{v}_{2}=\overrightarrow{0}
\end{aligned}
$$

$\vec{V}_{2} \neq \vec{O}$ since it's an eigen vector.

$$
\lambda_{1}-\lambda_{2} \neq 0 \quad \sin a \quad \lambda_{1} \neq \lambda_{2}
$$

so $\quad c_{2}=0$.

The original equation becomes

$$
c_{1} \vec{v}_{1}=\overrightarrow{0}
$$

since $\vec{V}_{1} \neq 0$, it must be that $C_{1}=0$.

Since it must be that $c_{1}=c_{2}=0$, \vec{v}_{1} and \vec{v}_{2} are linear independent.

Section 5.2: The Characteristic Equation
Find the eigenvalues of $A=\left[\begin{array}{cc}2 & 3 \\ 3 & -6\end{array}\right]$ by appealing to the fact that the equation $A \mathbf{x}=\lambda l_{2} \mathbf{x}$ can be restated as:

Find a nontrivial solution of the homogeneous equation

$$
\left(A-\lambda I_{2}\right) \mathbf{x}=\mathbf{0} .
$$

we require the matrix $A-x I$ be singular. It follows that $\operatorname{det}(A-x I)$ must be zeno.

$$
A-\lambda I=\left[\begin{array}{cc}
2 & 3 \\
3 & -6
\end{array}\right]-\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right]=\left[\begin{array}{cc}
2-\lambda & 3 \\
3 & -6-\lambda
\end{array}\right]
$$

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =(2-\lambda)(-6-\lambda)-3 \cdot 3 \\
& =\lambda^{2}+4 \lambda-12-9=\lambda^{2}+4 \lambda-21
\end{aligned}
$$

We wont λ to solve

$$
\begin{aligned}
0 & =\lambda^{2}+4 \lambda-21 \\
& =(\lambda+7)(\lambda-3)
\end{aligned}
$$

Then are two volus $\lambda_{1}=-7$ and $\lambda_{2}=3$.

Theorem (adding more to the invertible matrix theorem)

The $n \times n$ matrix A is invertible if and only if ${ }^{1}$
(s) The number 0 is not an eigenvalue of A.
(t) The determinant of A is nonzero.
${ }^{1}$ This is nothing new, we're just adding to the list.

Characteristic Equation

Definition: For $n \times n$ matrix A, the expression

$$
\operatorname{det}(A-\lambda I)
$$

is an $n^{\text {th }}$ degree polynomial in λ. It is called the characteristic polynomial of A.

Definition:The equation

$$
\operatorname{det}(A-\lambda I)=0
$$

is called the characteristic equation of A.
Theorem: The scalar λ is an eigenvalue of the matrix A if and only if it is a root of the characteristic equation.

Example
Find the characteristic equation for the matrix and identify all of its eigenvalues.

$$
A=\left[\begin{array}{cccc}
5 & -2 & 6 & -1 \\
0 & 3 & -8 & 0 \\
0 & 0 & 5 & 4 \\
0 & 0 & 0 & 1
\end{array}\right] \quad A-\lambda I=\left[\begin{array}{cccc}
5-\lambda & -2 & 6 & -1 \\
0 & 3-\lambda & -8 & 0 \\
0 & 0 & 5-\lambda & 4 \\
0 & 0 & 0 & 1-\lambda
\end{array}\right]
$$

The cheradenistic polynomid is

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =(5-\lambda)(3-\lambda)(5-\lambda)(1-\lambda) \\
& =(5-\lambda)^{2}(3-\lambda)(1-\lambda)
\end{aligned}
$$

The cheralteristic equation is

$$
(5-\lambda)^{2}(3-\lambda)(1-\lambda)=0
$$

The eisen values are 5,3 , and 1 .

Multiplicities

Definition: The algebraic multiplicity of an eigenvalue is its multiplicity as a root of the characteristic equation. The geometric multiplicity is the dimension of its corresponding eigenspace.

Example Find the algebraic and geometric multiplicity of the eigenvalue $\lambda=5$ of
The choractenistic eau. is
$A=\left[\begin{array}{cccc}5 & -2 & 6 & -1 \\ 0 & 3 & -8 & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1\end{array}\right]$

$$
\begin{aligned}
& (\lambda-5)^{2}(\lambda-3)(\lambda-1)=0 \\
& 5 \text { is a double root so its } \\
& \text { algebraic multiplicity is } 2 \text {. }
\end{aligned}
$$

$$
\begin{array}{r}
A-S I=\left[\begin{array}{cccc}
0 & -2 & 6 & -1 \\
0 & -2 & -8 & 0 \\
0 & 0 & 0 & 4 \\
0 & 0 & 0 & -4
\end{array}\right] \\
\rightarrow \\
\\
x_{1} \text {-ref }\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \\
x_{2}=x_{3}=x_{4}=0
\end{array}
$$

The pigen vectors one $\vec{x}=x_{1}\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]$. The geometric muetiplicits

