November 9 MATH 1113 sec. 52 Fall 2018

Section 6.5: Trigonometric Functions of a Real Variable and Their Graphs

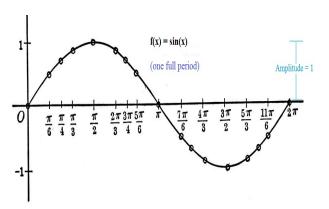


Figure: It's worth noting that major features (maximum, minimum, *x*-intercepts) divide the period into four equal parts.

Plot of $y = f(x) = \sin x$

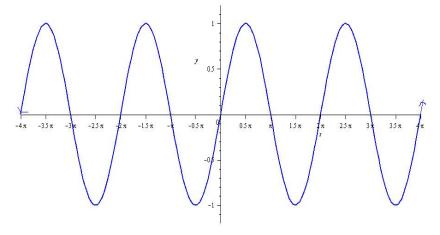


Figure: $y = \sin x$ over four full periods. Note the periodicity and the odd symmetry.

Plot of $y = f(x) = \cos x$

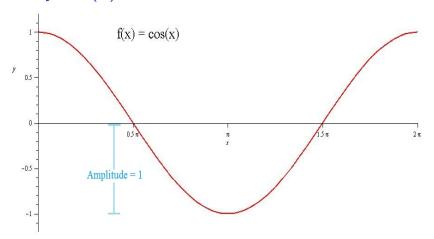


Figure: $y = \cos x$ over one full period.

Plot of $y = f(x) = \cos x$

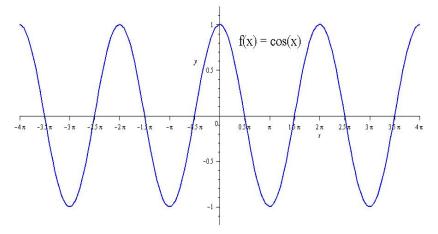


Figure: $y = \cos x$ over four full periods. Note the periodicity and the even symmetry

Plot of $f(x) = \cos x$ and $g(x) = \sin x$ Together

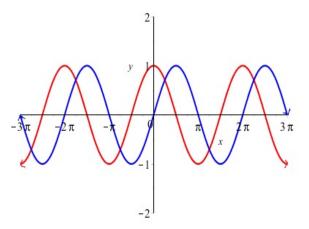


Figure: Note that the cofunction property $cos(x) = sin(\pi/2 - x)$ can be seen in the graphs.

A word of caution on using the unit circle

Our goal is to know and understand the properties of the trigonometric functions as **real valued functions of real variables**.

- They appear in many models of periodic processes (sound/water waves, seasonal processes, predator-prey interactions) that have no connection to triangles or circles.
- Right triangles and the unit circle provide powerful mnemonic devices.
- You'll often see x used as the independent variable—in this class and in Calculus to be sure! The point $(x, y) = (\cos s, \sin s)$ on the unit circle are not the same (x, y) as in $y = \cos x$. Get used to it!

Summary of Sine and Cosine Properties

Let $f(x) = \sin x$ and $g(x) = \cos x$. Then

- ▶ Both f and g are periodic with fundamental period 2π .
- ▶ The domain of both f and g is $(-\infty, \infty)$.
- ▶ The range of both f and g is [-1, 1]; they have amplitude 1.
- ▶ f is an odd function, i.e. $f(-x) = \sin(-x) = -\sin x = -f(x)$.
- ▶ g is an even function, i.e. $g(-x) = \cos(-x) = \cos x = g(x)$.
- ▶ Both f and g are continuous on their entire domain $(-\infty, \infty)$.
- ► The zeros of f are integer multiples of π , i.e. $f(n\pi) = 0$ for $n = 0, \pm 1, \pm 2, ...$
- ► The zeros of g are odd integer multiples of $\pi/2$, $g\left(\frac{m\pi}{2}\right) = 0$ for $m = \pm 1, \pm 3, \dots$

Question

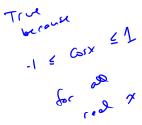
Let $f(x) = \sin x$, and suppose that f(a) = -0.62 for some real number a. Which of the following is true?

(a)
$$f(a+2\pi) = -0.62$$
 Sin $(x+2\pi) = \sin(x)$ for all real x

(b)
$$f(2a) = -1.24$$
 \leftarrow outside the range $-1 \leq \sin(x) \leq 1$ for all x

(c)
$$f(-a) = 0.62$$

 $Sin(-x) = -Sin(x)$ for all red x


- (d) Only (a) and (b) are true.
- (e) Only (a) and (c) are true.

Question

True or False: The equation $\cos x = 2$ has no real solutions.

- (a) True, and I'm confident.
- (b) True, but I'm not confident.
- (c) False, and I'm confident.
- (d) False, but I'm not confident.

The Tangent

The function $\tan s = \frac{\sin s}{\cos s}$. Recall that

$$\cos s = 0$$
 whenever $s = \frac{m\pi}{2}$ for $m = \pm 1, \pm 3, \pm 5, \dots$

When $\cos s = 0$, $\sin s$ is either 1 or -1. Hence

Domain: The domain of the tangent function is all real number **except** odd multiples of $\pi/2$. We can write this as

$$\left\{ s \mid s \neq \frac{\pi}{2} + k\pi, \ k = 0, \pm 1, \pm 2, \dots \right\}$$

Moreover, the graph of the tangent function has vertical asymptotes at each odd multiple of $\pi/2$.

The Tangent

Range: The range of the tangent function is all real numbers.

Symmetry: The function $f(s) = \tan s$ is odd. That is

$$f(-s) = \tan(-s) = -\tan s = -f(s).$$

Perodicity: The tangent function is periodic with fundamental period π . That is

 $tan(s + \pi) = tan s$ for all s in the domain.

Note: The period of the tangent function is π . This is different from the period of the sine and cosine.

The Tangent

A few key tangent values:

S	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
tan s	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	undef.

And due to symmetry

s	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0
tan <i>s</i>	undef.	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0

Here is an applet to plot two periods of the function $f(s) = \tan s$.

GeoGebra Graph Applet: Sine, Cosine, and Tangent

Basic Plot $f(x) = \tan x$

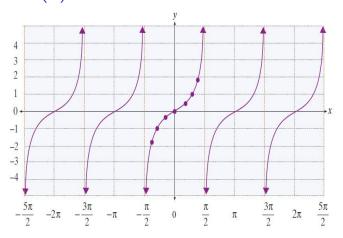


Figure: Plot of several periods of $f(x) = \tan x$. Note that the interval between adjacent asymptotes is the period π .

13 / 39

Cotangent: Using the Cofunction ID and Symmetry

$$\cot s = \tan\left(\frac{\pi}{2} - s\right) = \tan\left(-\left(s - \frac{\pi}{2}\right)\right) = -\tan\left(s - \frac{\pi}{2}\right).$$

So the graph of $f(s) = \cot s$ is the graph of $g(s) = \tan s$ under a horizontal shift $\pi/2$ units to the right followed by a reflection in the s-axis.

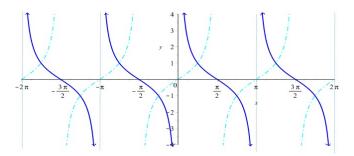


Figure: Plot of $f(x) = \cot x$. Note that the lines $x = n\pi$ for $n = 0, \pm 1, \pm 2, ...$ are vertical asymptotes to the graph. The dashed curve is $y = \tan x$.

Cosecant and Secant

Domains: Since $sin(n\pi) = 0$ for integers n,

Domain($\csc s$) = { $s \mid s \neq n\pi$, for integers n}.

Since $\cos\left(\frac{\pi}{2} + n\pi\right) = 0$ for integers n, the domain of $\sec s$ is

$$\mathbf{Domain}(\sec s) \ = \ \left\{ s \ \middle| \ s \neq \frac{\pi}{2} + n\pi, \ \text{for integers} \ n \right\}.$$

Ranges: Note that

$$|\csc s| = \frac{1}{|\sin s|} \ge 1$$
 and $|\sec s| = \frac{1}{|\cos s|} \ge 1$

so the range of both csc s and sec s is

$$(-\infty,-1]\cup[1,\infty).$$

Cosecant: Using $\csc s = \frac{1}{\sin s}$

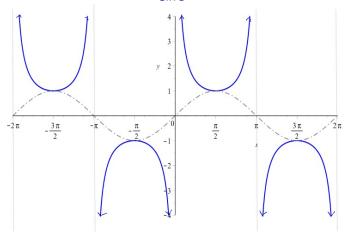


Figure: Two periods of $f(s) = \csc s$. The dashed curve is $y = \sin s$. Note the asymptotes $s = n\pi$ for integers n where $\sin s$ takes its zeros. The curves meet at the relative extrema and have the same period 2π .

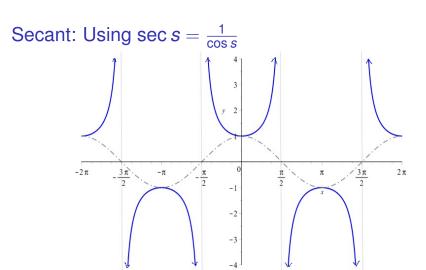


Figure: Two periods of $f(s) = \sec s$. The dashed curve is $y = \cos s$. Note the asymptotes $s = \pi/2 + n\pi$ for integers n where $\cos s$ takes its zeros. The curves meet at the relative extrema and have the same period 2π .

Question

Recall that the cosine is an even function and the sine is an odd function. Moreover,

$$\sec x = \frac{1}{\cos x}$$
 and $\csc x = \frac{1}{\sin x}$

Which of the following statements is true about the symmetry of the secant and cosecant.

- (a) Both of the secant and cosecant are even functions.
- (b) Both the secant and cosecant are odd functions.
- (c) Secant is even, and cosecant is odd.
 - (d) Secant is odd, and cosecant is even.
 - (e) Symmetry for secant and cosecant can't be deduced from symmetry of cosine and sine.

Section 6.6: Graphing Trigonometric Functions with Transformations

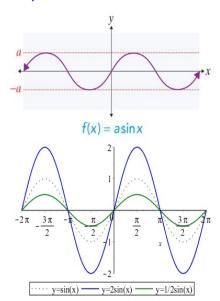
Our goal is to graph functions of the form

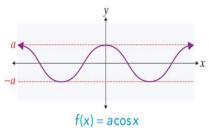
$$f(x) = a\sin(bx - c) + d$$
 or $f(x) = a\cos(bx - c) + d$

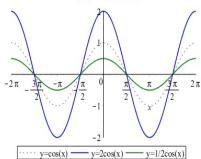
Note: here we will be graphing points (x, y) on a curve y = f(x).

Amplitude

Consider:
$$f(x) = a\sin(bx - c) + d$$
 or $f(x) = a\cos(bx - c) + d$


Definition: Let a be any nonzero real number. The **amplitude** of the function f defined above is the value |a|.


Recall that this is half the distance between the maximum and minimum values.


If a < 0 the graph is reflected in the x-axis. But the amplitude is still |a|.

Amplitude

Example

Identify the amplitude A of each function. Determine if the graph is reflected in the x-axis.

(a)
$$f(x) = 3\sin(4x-2)+1$$
 A= 3 we reflection as

(b)
$$f(x) = -5\sin\left(\frac{\pi x}{2}\right) + 7$$
 A = 5 Yes reflection as -5 is reget ...

(c)
$$f(x) = 2-6\cos(2x+3)$$
 A= 6
= $-6\cos(2x+3) + 2$