Nov. 9 Math 1190 sec. 51 Fall 2016

Section 5.1: Area (under the graph of a nonnegative function)
We will investigate the area enclosed by the graph of a function f. We'll make the following assumptions (for now):

- f is continuous on the interval $[a, b]$, and
- f is nonnegative, i.e $f(x) \geq 0$, on $[a, b]$.

Our Goal: Find the area of such a region.
We'll start by approximating the region with a bunch of rectangles, then move to the exact value.

Figure: Some choices as to how to define the heights.

Approximating Area Using Rectangles

We can experiment with

- Which points to use for the heights (left, right, middle, other....)
- How many rectangles we use
to try to get a good approximation.

Definition: We will define the true area to be value we obtain taking the limit as the number of rectangles goes to $+\infty$.

Some terminology

- A Partition P of an interval $[a, b]$ is a collection of points $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ such that

$$
a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b .
$$

- A Subinterval is one of the intervals $x_{i-1} \leq x \leq x_{i}$ determined by a partition.
- The width of a subinterval is denoted $\Delta x_{i}=x_{i}-x_{i-1}$. If they are all the same size (equal spacing), then

$$
\Delta x=\frac{b-a}{n}, \quad \text { and this is called the norm of the partition. }
$$

- A set of sample points is a set $\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ such that $x_{i-1} \leq c_{i} \leq x_{i}$.
Taking the number of rectangles to ∞ is the same as taking the width $\Delta x \rightarrow 0$.

Example:
Write an equally spaced partition of the interval [0,2] with the specified number of subintervals, and determine the norm Δx.
(a) For $n=4$

$$
\begin{array}{lll}
\left\{0, \frac{1}{2}, 1, \frac{3}{2}, 2\right\} & x_{0}=0 & a=0 \\
& x_{1}=1 / 2 & b=2 \\
\Delta x=\frac{b-a}{n}=\frac{2-0}{4}=\frac{1}{2} & x_{2}=1 & n=4 \\
& x_{3}=3 / 2 & \\
& x_{4}=2 &
\end{array}
$$

Example:
Write an equally spaced partition of the interval [0,2] with the specified number of subintervals, and determine the norm Δx.
(b) For $n=8$

$$
\begin{aligned}
& \left\{0, \frac{1}{4}, \frac{1}{2}, 3 / 4,1,5 / 4,3 / 2,7 / 4,2\right\} \\
& \Delta x=\frac{b-a}{n}=\frac{2-0}{8}=\frac{1}{4}
\end{aligned}
$$

$$
\begin{aligned}
& x_{0}=0 \\
& x_{1}=1 / 4=0+1 \cdot \frac{1}{4} \\
& x_{2}=1 / 2=0+2 \cdot \frac{1}{4} \\
& x_{3}=3 / 4=0+3 \cdot \frac{4}{4} \\
& x_{4}=1 \\
& x_{5}=5 / 4 \\
& x_{6}=3 / 2 \\
& x_{7}=7 / 4 \quad x_{i}=0+i \frac{1}{4} \\
& x_{8}=2 \quad
\end{aligned}
$$

Question

Write an equally spaced partition of the interval $[0,2]$ with 6 subintervals, and determine the norm Δx.
(a) $\left\{0, \frac{1}{3}, \frac{2}{3}, 1, \frac{4}{3}, \frac{5}{3}, 2\right\} \quad \Delta x=\frac{1}{3}$
(b) $\left\{0, \frac{1}{3}, \frac{2}{3}, 1, \frac{4}{3}, \frac{5}{3}, 2\right\} \quad \Delta x=\frac{1}{6}$
(c) $\left\{0, \frac{1}{6}, \frac{1}{3}, 1, \frac{5}{6}, \frac{7}{6}, 2\right\} \quad \Delta x=\frac{1}{3}$
(c) Find an equally spaced partition of $[0,2]$ having N subintervals. What is the norm Δx ?

$$
\begin{aligned}
& \Delta x=\frac{b-a}{n}=\frac{2-0}{N}=\frac{2}{N} \\
& x_{0}=0 \\
& x_{N}=2 \\
& x_{1}=\frac{2}{N} \\
& x_{2}=2 \cdot \frac{2}{N} \\
& x_{3}=3 \cdot \frac{2}{N} \quad \Rightarrow \quad x_{i}=i \frac{2}{N}=\frac{2 i}{N} \\
& \text { ole } X_{N}=N\left(\frac{2}{N}\right)=2 \\
& \left\{x_{i} \left\lvert\, x_{i}=\frac{2 i}{N}\right., i=0, \ldots, N\right\} \\
& \begin{array}{llllll}
1 & 1 & 1 & 1 & & x_{w} \\
x_{0} & x_{1} & x_{2} & x_{3} & \ldots & x_{N} \\
0 & \frac{2}{N} & \frac{4}{N} & \frac{6}{N} & & N\left(\frac{2}{N}\right)
\end{array}=2
\end{aligned}
$$

Approximating area with a Partition and sample points

Figure: Area $\approx f\left(c_{1}\right) \Delta x+f\left(c_{2}\right) \Delta x+f\left(c_{3}\right) \Delta x+f\left(c_{4}\right) \Delta x$. This can be written as

$$
\sum_{i=1}^{n} f\left(c_{i}\right) \Delta x .
$$

In general, an equally spaced partition of $[a, b]$ with n subintervals means

- $\Delta x=\frac{b-a}{n}$
- $x_{0}=a, x_{1}=a+\Delta x, x_{2}=a+2 \Delta x$, i.e. $x_{i}=a+i \Delta x$
- Taking heights to be

$$
\begin{aligned}
& \text { left ends } \quad c_{i}=x_{i-1} \quad \text { area } \approx \sum_{i=1}^{n} f\left(x_{i-1}\right) \Delta x \\
& \text { right ends } \quad c_{i}=x_{i} \quad \text { area } \approx \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
\end{aligned}
$$

- The true area exists (for f continuous) and is given by

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x
$$

Lower and Upper Sums

The standard way to set up these sums is to take c_{i} such that
$f\left(c_{i}\right)$ is the abs. minimum value of f on $\left[x_{i-1}, x_{i}\right]$

Then set A_{L}

$$
A_{L}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x
$$

This is called a Lower Riemann sum.

Lower and Upper Sums

Then, we take C_{i} such that
$f\left(C_{i}\right)$ is the abs. maximum value of f on $\left[x_{i-1}, x_{i}\right]$

Then set A_{U}

$$
A_{U}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(C_{i}\right) \Delta x
$$

This is called a Upper Riemann sum.

Lower and Upper Sums

If f is continuous on $[a, b]$, then it will necessarily be that

$$
A_{L}=A_{U} .
$$

This value is the true area.

In practice, these are tough to compute unless f is only increasing or only decreasing. So instead, we tend to use left and right sums.

Example: Find the area under the curve $y=1-x^{2}$,

$$
0 \leq x \leq 1
$$

Use right end points $c_{i}=x_{i}$ and assume the following identity

$$
\sum_{i=1}^{n} i^{2}=\frac{2 n^{3}+3 n^{2}+n}{6}
$$

(sum of first n squares)

Let's take a partition wI n subintervals.

$$
\begin{gathered}
x_{0}=0, x_{1}=\frac{1}{n}, x_{2}=\frac{2}{n}, x_{3}=\frac{3}{n}, \ldots \\
x_{i}=\frac{i}{n}
\end{gathered}
$$

right end points

A representative rectangle
\square height $f\left(x_{i}\right)=1-x_{i}^{2}=1-\left(\frac{i}{n}\right)^{2}$
width $\Delta x=\frac{1}{n}$

$$
x_{i-1} \quad x_{i}
$$

Area of one rectangle $=$ height x width

$$
f\left(x_{i}\right) \Delta x=\left(1-\frac{i^{2}}{n^{2}}\right) \cdot \frac{1}{n}
$$

Our Riemann Sum is

$$
\begin{aligned}
f\left(x_{1}\right) \Delta x & +f\left(x_{2}\right) \Delta x+\ldots+f\left(x_{n}\right) \Delta x \\
& =\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\sum_{i=1}^{n}\left(1-\frac{i^{2}}{n^{2}}\right) \cdot \frac{1}{n}
\end{aligned}
$$

We need to taler the limit as $n \rightarrow \infty$.

Let's clean it up first:

$$
\sum_{i=1}^{n}\left(1-\frac{i^{2}}{n^{2}}\right) \cdot \frac{1}{n}=\sum_{i=1}^{n}\left(\frac{1}{n}-\frac{i^{2}}{n^{3}}\right)
$$

$$
\begin{aligned}
& =\sum_{i=1}^{n} \frac{1}{n}-\sum_{i=1}^{n} \frac{i^{2}}{n^{3}} \\
& =\frac{1}{n} \sum_{i=1}^{n} 1-\frac{1}{n^{3}} \sum_{i=1}^{n} i^{2} \\
& =\frac{1}{n}(n)-\frac{1}{n^{3}}\left(\frac{2 n^{3}+3 n^{2}+n}{6}\right)
\end{aligned}
$$

split the difference
factor out $\frac{1}{n}$ and $\frac{1}{n^{3}}$

Use the given formula and *

$$
\text { * } \sum_{i=1}^{n} 1=1+1+1+\ldots+1=n
$$

Ow approximation is

$$
A \approx 1-\frac{2 n^{3}+3 n^{2}+n}{6 n^{3}}
$$

The true area is obtained by toking $n \rightarrow \infty$.

$$
\begin{aligned}
A & =\lim _{n \rightarrow \infty}\left(1-\frac{2 n^{3}+3 n^{2}+n}{6 n^{3}}\right) \\
& =\lim _{n \rightarrow \infty}\left(1-\frac{2 n^{3}+3 n^{2}+n}{6 n^{3}} \cdot \frac{\frac{1}{n^{3}}}{\frac{1}{n^{3}}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty}\left(1-\frac{2+\frac{3}{n}+\frac{1}{n^{2}}}{6}\right) \\
& =1-\frac{2+0+0}{6}=1-\frac{2}{6}=1-\frac{1}{3}=\frac{2}{3}
\end{aligned}
$$

 2/3 square units.

