Nov. 9 Math 1190 sec. 51 Fall 2016

Section 5.1: Area (under the graph of a nonnegative function)

We will investigate the area enclosed by the graph of a function f. We'll
make the following assumptions (for now):

» fis continuous on the interval [a, b], and
» fis nonnegative, i.e f(x) > 0, on [a, b].

Our Goal: Find the area of such a region.

We'll start by approximating the region with a bunch of
rectangles, then move to the exact value.
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Figure: Some choices as to how to define the heights.



Approximating Area Using Rectangles

We can experiment with
» Which points to use for the heights (left, right, middle, other....)
» How many rectangles we use

to try to get a good approximation.

Definition: We will define the true area to be value we obtain taking
the limit as the number of rectangles goes to +oo.



Some terminology

» A Partition P of an interval [a, b] is a collection of points
{Xo, X1, .-, Xn} such that

a=Xg< Xy < Xo<---<Xp=b.
» A Subinterval is one of the intervals x;,_; < x < x; determined by
a partition.
» The width of a subinterval is denoted Ax; = x; — x;_1. If they are
all the same size (equal spacing), then

Ax = b; 2 and this is called the norm of the partition.

» A set of sample points is a set {cy, ¢, ..., ¢y} such that
Xji—1 < Cj < Xj.

Taking the number of rectangles to ~o is the same as taking the width
Ax — 0.



Example:

Write an equally spaced partition of the interval [0, 2] with the specified
number of subintervals, and determine the norm Ax.
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Example:

Write an equally spaced partition of the interval [0, 2] with the specified
number of subintervals, and determine the norm Ax.
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Question

”

4
Write an equally spaced partition of the interval [0, 2] with 6
subintervals, and determine the norm Ax.
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{0.3.5.1,5.5.2} Ax=3
(C) {07%7%717%7%72} AX:%



(c) Find an equally spaced partition of [0, 2] having N subintervals.
What is the norm Ax?
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Approximating area with a Partition and sample points
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Figure: Area ™ f(c1)Ax + f(c2) Ax + f(c3)Ax + f(cs)Ax. This can be written

as
S0 f(c)Ax,



In general, an equally spaced partition of [a, b] with n subintervals
means

» Ax= b
> Xo=a, Xy =a+ Ax, xo = a+2Ax,i.e. x;=a+ iAx

Taking heights to be
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The true area exists (for f continuous) and is given by

v

n—00 4

n
lim > f(c)Ax.
i=1



Lower and Upper Sums

The standard way to set up these sums is to take ¢; such that

f(ci) s the abs. minimum value of f on [x;_1, x;]

Then set A;
A fim e

This is called a Lower Riemann sum.



Lower and Upper Sums

Then, we take C; such that

f(C;) is the abs. maximum value of f on [x;_1, xj]

Then set Ay
n
Ay = lim > f(C)Ax.
i=1

This is called a Upper Riemann sum.



Lower and Upper Sums

If f is continuous on [a, b], then it will necessarily be that
AL =Ay.

This value is the true area.

In practice, these are tough to compute unless f is only increasing or
only decreasing. So instead, we tend to use left and right sums.



Example: Find the area under the curve y = 1 — x2,
0<x<1.
Use right end points ¢; = x; and assume the following identity
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