November 9 Math 2306 sec 51 Fall 2015

Section 7.3: Translation Theorems

Theorem (translation in s) Suppose $\mathscr{L}\{f(t)\}=F(s)$. Then for any real number a

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}=F(s-a)
$$

Consequently $\mathscr{L}^{-1}\{F(s-a)\}=e^{\text {at }} f(t)$ if $\mathscr{L}^{-1}\{F(s)\}=f(t)$.
Next, we will consider a horizontal shift in t. Since we interested in functions defined on $0 \leq t<\infty$, we need a preliminary concept.

The Unit Step Function

Let $a \geq 0$. The unit step function $\mathscr{U}(t-a)$ is defined by

$$
\mathscr{U}(t-a)= \begin{cases}0, & 0 \leq t<a \\ 1, & t \geq a\end{cases}
$$

Example
Plot the graph of $f(t)=\mathscr{U}(t-1)-\mathscr{U}(t-3)$.

$$
u(t-1):\left\{\begin{array}{ll}
0, & 0 \leq t<1 \\
1, & t \geq 1
\end{array} \quad u(t-3)= \begin{cases}0, & 0 \leq t<3 \\
1, & t \geq 3\end{cases}\right.
$$

For $0 \leq t<1 \quad f(t)=0-0=0$
For $1 \leq t<3 \quad f(t)=1-0=1$
For $t \geqslant 3 \quad f(t)=1-1=0$

Piecewise Defined Functions
Verify that

$$
f(t)=\left\{\begin{array}{l}
g(t), \quad 0 \leq t<a \\
h(t), \quad t \geq a
\end{array}=g(t)-g(t) \mathscr{U}(t-a)+h(t) \mathscr{U}(t-a)\right.
$$

For $0 \leq t<a, u(t-a)=0$

$$
f(t)=g(t)-g(t) \cdot 0+h(t) \cdot 0=g(t) \text { as required }
$$

For $\quad t \geqslant a, \quad u(t-a)=1$
$f(t)=g(t)-g(t) \cdot 1+h(t) \cdot 1=h(t)$ as as required.

Piecewise Defined Functions
Express f on one line in terms of unit step functions.

$$
\begin{aligned}
& f(t)= \begin{cases}3 t, & 0 \leq t<1 \\
t^{2}, & 1 \leq t<5 \\
e^{t}, & t \geq 5\end{cases} \\
& f(t)=3 t-3 t u(t-1)+t^{2} u(t-1)-t^{2} u(t-5)+e^{t} u(t-5)
\end{aligned}
$$

tum off turnon turnoff turnon

We can double check for accuracy:
For $0 \leq t<1 \quad u(t-1)=0$ and $u(t-6)=0$
then $f(t)=3 t-3 t \cdot 0+t^{2} \cdot 0-t^{2} \cdot 0+e^{t} \cdot 0=3 t$

For $1 \leq t<5, u(t-n=1, u(t-\delta)=0$
then $f(t)=3 t-3 t \cdot 1+t^{2} \cdot 1-t^{2} \cdot 0+e^{t} \cdot 0=t^{2}$

For $t \geqslant 5, \quad u(t-1)=1 \quad u(t-5)=1$
then $f(t)=3 t-3 t \cdot 1+t^{2} \cdot 1-t^{2} \cdot 1+e^{t} \cdot 1=e^{t}$
as required

Translation in t

Given a function $f(t)$ for $t \geq 0$, and a number $a>0$

$$
f(t-a) \mathscr{U}(t-a)= \begin{cases}0, & 0 \leq t<a \\ f(t-a), & t \geq a\end{cases}
$$

Theorem (translation in t)

If $F(s)=\mathscr{L}\{f(t)\}$ and $a>0$, then

$$
\mathscr{L}\{f(t-a) \mathscr{U}(t-a)\}=e^{-a s} F(s) .
$$

In particular,

$$
\mathscr{L}\{\mathscr{U}(t-a)\}=\frac{e^{-a s}}{s} .
$$

As another example,

$$
\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}} \quad \Longrightarrow \quad \mathscr{L}\left\{(t-a)^{n} \mathscr{U}(t-a)\right\}=\frac{n!e^{-a s}}{s^{n+1}} .
$$

Example
Find the Laplace transform $\mathscr{L}\{f(t)\}$ where

$$
\begin{aligned}
& f(t)= \begin{cases}1, & 0 \leq t<1 \\
t, & t \geq 1\end{cases} \\
&=1+(t-1) u(t-1) \quad \mathcal{L}\{t\}=\frac{1}{s^{2}} \\
& \mathcal{L}\{f(t)\}=\mathcal{L}\{1+(t-1) u(t-1)\} \\
&=\mathcal{L}\{1\}+\mathcal{L}\{(t-1) u(t-1) \\
&=\frac{1}{s}+\frac{1}{s^{2}} e^{-s}
\end{aligned}
$$

A Couple of Useful Results

Another formulation of this translation theorem is
(1) $\mathscr{L}\{g(t) \mathscr{U}(t-a)\}=e^{-a s} \mathscr{L}\{g(t+a)\}$.

Nole

$$
g(t)=g(t-a+a)
$$

The inverse form of this tranlation theorem is
(2) $\mathscr{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) \mathscr{U}(t-a)$.

Evaluate the Laplace or Inverse Laplace Transform
(a)

$$
\begin{aligned}
\mathscr{L}\{2 t \mathscr{U}(t-3)\} & =\mathcal{L}\{a(t+3)\} e^{-3 s} \\
& =e^{-3 s} \mathscr{L}\{2 t+6\} \\
& =e^{-3 s}(2 \mathscr{L}\{t\}+6 \mathcal{L}\{1\}) \\
& =e^{-3 s}\left(\frac{2}{\delta^{2}}+\frac{6}{s}\right)=\frac{2 e^{-3 s}}{\delta^{2}}+\frac{6 e^{-3 s}}{\delta}
\end{aligned}
$$

$$
\text { * } 2 t=2(t-3+3)=2(t-3)+6
$$

(b)

$$
\begin{aligned}
& \mathscr{L}\left\{\cos t \mathscr{U}\left(t-\frac{\pi}{2}\right)\right\}=e^{-\frac{\pi}{2} s} \mathscr{L}\left\{\cos \left(t+\frac{\pi}{2}\right)\right\} \\
&=e^{-\frac{\pi}{2} s} \mathscr{L}\{-\sin t\} \\
&=-e^{-\frac{\pi}{2} \delta} \mathscr{L}\{\sin t\}=\frac{-e^{-\frac{\pi}{2} s}}{\delta^{2}+1} \\
& * \cos \left(t+\frac{\pi}{2}\right)=\cos t \cos \frac{\pi}{2}-\sin t \sin \frac{\pi}{2}=-\sin t
\end{aligned}
$$

(c) $\mathscr{L}^{-1}\left\{\frac{e^{-4 s}}{s^{3}}\right\}$

$$
=\frac{1}{2!}(t-4)^{2} u(t-4)
$$

we need $\mathcal{L}^{-1}\left\{\frac{1}{s^{3}}\right\}=\mathcal{L}^{-1}\left\{\frac{1}{2!} \frac{2!}{s^{3}}\right\}$

$$
=\frac{1}{2!} \mathscr{L}^{-1}\left\{\frac{2!}{s^{3}}\right\}
$$

$$
=\frac{1}{2!} t^{2}
$$

(d) $\mathscr{L}^{-1}\left\{\frac{e^{-s}}{s(s+1)}\right\}$ we read $\mathscr{L}^{-1}\left\{\frac{1}{s(s+1)}\right\}$

Decomp

$$
\begin{aligned}
\frac{1}{s(s+1)} & =\frac{A}{s}+\frac{B}{s+1} \\
\mathcal{L}^{-1}\left\{\frac{1}{s}-\frac{1}{s+1}\right\} & \begin{array}{ll}
1=A(s+1)+B s \\
& =1-e^{-t}
\end{array}
\end{aligned}
$$

$$
\mathcal{L}^{-1}\left\{\frac{e^{-s}}{s(s+1)}\right\}=1 u(t-1)-e^{-(t-1)} u(t-1)
$$

