November 9 Math 2306 sec. 53 Fall 2018

Section 16: Laplace Transforms of Derivatives and IVPs

For $y=y(t)$ defined on $[0, \infty)$ having derivatives $y^{\prime}, y^{\prime \prime}$ and so forth, if

$$
\mathscr{L}\{y(t)\}=Y(s)
$$

then

$$
\begin{gathered}
\mathscr{L}\left\{\frac{d y}{d t}\right\}=s Y(s)-y(0), \\
\mathscr{L}\left\{\frac{d^{2} y}{d t^{2}}\right\}=s^{2} Y(s)-s y(0)-y^{\prime}(0), \\
\vdots \\
\mathscr{L}\left\{\frac{d^{n} y}{d t^{n}}\right\}=s^{n} Y(s)-s^{n-1} y(0)-s^{n-2} y^{\prime}(0)-\cdots-y^{(n-1)}(0) .
\end{gathered}
$$

Solving Constant Coefficient IVPs

Consider the constant coefficient ODE with initial conditions given at $t=0$.

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(t), \quad y(0)=y_{0}, \quad y^{\prime}(0)=y_{1}
$$

The Laplace transform

$$
Y(s)=\mathscr{L}\{y(t)\}=\frac{Q(s)}{P(s)}+\frac{G(s)}{P(s)}
$$

where $G(s)=\mathscr{L}\{g(t)\}$ and P is the characteristic polynomial for the ODE.

The solution to the IVP satisfies $y(t)=\mathscr{L}^{-1}\{Y(s)\}$.

Zero Input/Zero State Responses

In the solution to the IVP

$$
y(t)=\mathscr{L}^{-1}\left\{\frac{Q(s)}{P(s)}\right\}+\mathscr{L}^{-1}\left\{\frac{G(s)}{P(s)}\right\}
$$

$\mathscr{L}^{-1}\left\{\frac{Q(s)}{P(s)}\right\} \quad$ is called the zero input response,
and

$$
\mathscr{L}^{-1}\left\{\frac{G(s)}{P(s)}\right\} \quad \text { is called the zero state response. }
$$

Solve the IVP using the Laplace Transform
(a) $\quad \frac{d y}{d t}+3 y=2 t \quad y(0)=2$

Take transform of ODE

$$
\begin{aligned}
& \mathcal{L}\left\{y^{\prime}+3 y\right\}=\mathcal{L}\{2 t\} \\
& \mathcal{L}\left\{y^{\prime}\right\}+3 \mathcal{L}\{y\}=2 \mathcal{L}\{t\} \\
& s Y(s)-y(0)+3 Y(s)=\frac{2}{s^{2}}
\end{aligned}
$$

Solve for $Y(s)$

$$
(s+3) Y(s)-2=\frac{2}{s^{2}}
$$

Let $Y_{(s)}=\mathcal{L}\{y(t)\}$

$$
\begin{aligned}
& (s+3) Y(s)=\frac{2}{s^{2}}+2 \\
& Y(s)=\frac{2}{s^{2}(s+3)}+\frac{2}{s+3}
\end{aligned}
$$

We'll do a partid frection decomp on $\frac{2}{s^{2}(s+3)}$

$$
\begin{aligned}
\frac{2}{s^{2}(s+3)} & =\frac{A}{s}+\frac{\beta}{s^{2}}+\frac{C}{s+3} \quad \begin{array}{c}
\text { multiply } \\
b y \\
s^{2}(s+3)
\end{array} \\
2 & =A s(s+3)+B(s+3)+C s^{2} \\
& =A\left(s^{2}+3 s\right)+B(s+3)+C s^{2} \\
\underline{0} s^{2}+\underline{0} s+2 & =(A+C) s^{2}+(\underline{(3+B) s+3 B}
\end{aligned}
$$

$$
\begin{aligned}
A+C & =0 \\
3 A+B & =0 \Rightarrow A=\frac{-1}{3} B \\
3 B & =2 \\
B & =\frac{2}{3}, A=-\frac{-2}{9}, C=\frac{2}{9} \\
Y(s) & =\frac{-2}{9} s \\
s & \frac{\frac{2}{3}}{s^{2}}+\frac{\frac{2}{9}}{s+3}+\frac{2}{s+3} \\
Y(s) & =\frac{-2}{9} \\
s & \frac{\frac{2}{3}}{s^{2}}+\frac{20 / 9}{s+3}
\end{aligned}
$$

The solution to the IJP

$$
y(t)=\mathcal{L}^{-1}\{Y(s)\}
$$

$$
\begin{aligned}
y(t) & =\mathcal{L}^{-1}\left\{\frac{-2 / 9}{s}+\frac{2 / 3}{s^{2}}+\frac{20 / 9}{s+3}\right\} \\
& =\frac{-2}{9} \mathscr{L}^{-1}\left\{\frac{1}{s}\right\}+\frac{2}{3} \mathscr{L}^{-1}\left\{\frac{1}{s^{2}}\right\}+\frac{20}{9} \mathscr{L}^{-1}\left\{\frac{1}{s+3}\right\} \\
y(t) & =\frac{-2}{9}+\frac{2}{3} t+\frac{20}{9} e^{-3 t}
\end{aligned}
$$

Let's verify y solves

$$
y^{\prime}+3 y=2 t \quad y(0)=2
$$

$$
\begin{aligned}
& y(0)=\frac{-2}{9}+\frac{2}{3} \cdot 0+\frac{20}{9} \cdot e^{0}=\frac{-2}{9}+\frac{20}{9}=\frac{18}{9}=2 \\
& y^{\prime}=\frac{2}{3}+\frac{20}{9}(-3) e^{-3 t}=\frac{2}{3}-\frac{20}{3} e^{-3 t}
\end{aligned}
$$

So

$$
\begin{aligned}
y^{\prime}+3 y & =\frac{2}{3}-\frac{20}{3} e^{-3 t}+3\left(\frac{-2}{9}+\frac{2}{3} t+\frac{20}{9} e^{-3 t}\right) \\
& =\frac{2}{3}-\frac{20}{3} e^{-3 t}-\frac{2}{3}+2 t+\frac{20}{3} e^{-3 t}
\end{aligned}
$$

$=2 t$ as reguired.

Solve the IVP using the Laplace Transform

$$
\begin{array}{ll}
y^{\prime \prime}+4 y^{\prime}+4 y=t e^{-2 t} & y(0)=1, y^{\prime}(0)=0 \\
\mathcal{L}\left\{y^{\prime \prime}+4 y^{\prime}+4 y\right\}=\mathcal{L}\left\{t e^{-2 t}\right\} & \mathcal{L}\left\{f(t) e^{a t}\right\}=\mathcal{L}\{y(t)\} \\
\mathcal{L}\left\{y^{\prime \prime}\right\}+4 \mathcal{L}\left\{y^{\prime}\right\}+4 \mathcal{L}\{y\}=\frac{1}{(s+2)^{2}} & \mathcal{L}\{t\}=\frac{1}{s^{2}} \\
\text { and } a=-2 \\
s^{2} Y(s)-s y(0)-y^{\prime}(0)+4(s Y(s)-y(0))+4 Y(s)=\frac{1}{(s+2)^{2}}
\end{array}
$$

$$
\left(s^{2}+4 s+4\right) Y(s)-s-4=\frac{1}{(s+2)^{2}}
$$

Characteist C
polynomial for

$$
y^{\prime \prime}+4 y^{\prime}+4 y=0
$$

weill finish next time.

