November 9 Math 2306 sec. 57 Fall 2017

Section 17: Fourier Series: Trigonometric Series

Some Preliminary Concepts

Suppose two functions f and g are integrable on the interval $[a, b]$. We define the inner product of f and g on $[a, b]$ as

$$
<f, g>=\int_{a}^{b} f(x) g(x) d x
$$

We say that f and g are orthogonal on $[a, b]$ if

$$
\langle f, g\rangle=0 .
$$

The product depends on the interval, so the orthogonality of two functions depends on the interval.

Properties of an Inner Product

Let f, g, and h be integrable functions on the appropriate interval and let c be any real number. The following hold
(i) $<f, g>=<g, f>$
(ii) $<f, g+h>=<f, g>+<f, h>$
(iii) $<c f, g>=c<f, g>$
(iv) $<f, f>\geq 0$ and $<f, f>=0$ if and only if $f=0$

Orthogonal Set

A set of functions $\left\{\phi_{0}(x), \phi_{1}(x), \phi_{2}(x), \ldots\right\}$ is said to be orthogonal on an interval $[a, b]$ if

$$
<\phi_{m}, \phi_{n}>=\int_{a}^{b} \phi_{m}(x) \phi_{n}(x) d x=0 \text { whenever } m \neq n .
$$

Note that any function $\phi(x)$ that is not identically zero will satisfy

$$
\langle\phi, \phi\rangle=\int_{a}^{b} \phi^{2}(x) d x>0 .
$$

Hence we define the square norm of ϕ (on $[a, b]$) to be

$$
\|\phi\|=\sqrt{\int_{a}^{b} \phi^{2}(x) d x} .
$$

An Orthogonal Set of Functions
Consider the set of functions

$$
\{1, \cos x, \cos 2 x, \cos 3 x, \ldots, \sin x, \sin 2 x, \sin 3 x, \ldots\} \text { on }[-\pi, \pi] .
$$

Evaluate $\langle\cos (n x), 1\rangle$ and $\langle\sin (m x), 1\rangle$ for $n, m \geq 1$.

$$
\begin{aligned}
\langle\cos (n x), 1\rangle & =\int_{-\pi}^{\pi} \cos (n x) \cdot 1 d x \\
& =\int_{-\pi}^{\pi} \cos (n x) d x=\left.\frac{1}{n} \sin (n x)\right|_{-\pi} ^{\pi} \\
& =\frac{1}{n} \sin (n \pi)-\frac{1}{n} \sin (-n \pi)=0-0=0
\end{aligned}
$$

$$
\begin{aligned}
\langle\sin (m x), 1\rangle & =\int_{-\pi}^{\pi} \sin (n x) \cdot \mid d x \\
& =\int_{-\pi}^{\pi} \sin (m x) d x \\
& =\left.\frac{-1}{m} \cos (m x)\right|_{-\pi} ^{\pi} \\
& =\frac{-1}{m} \cos (m \pi)-\frac{-1}{m} \cos (-m \pi) \\
& =\frac{-1}{m} \cos (n \pi)+\frac{1}{m} \cos (m \pi)=0
\end{aligned}
$$

An Orthogonal Set of Functions

Consider the set of functions
$\{1, \cos x, \cos 2 x, \cos 3 x, \ldots, \sin x, \sin 2 x, \sin 3 x, \ldots\}$ on $\quad[-\pi, \pi]$.
It can easily be verified that
$\int_{-\pi}^{\pi} \cos n x d x=0$ and $\int_{-\pi}^{\pi} \sin m x d x=0$ for all $n, m \geq 1$,
$\int_{-\pi}^{\pi} \cos n x \sin m x d x=0$ for all $m, n \geq 1, \quad$ and
$\int_{-\pi}^{\pi} \cos n x \cos m x d x=\int_{-\pi}^{\pi} \sin n x \sin m x d x=\left\{\begin{array}{ll}0, & m \neq n \\ \pi, & n=m\end{array}\right.$,

An Orthogonal Set of Functions on $[-\pi, \pi]$

These integral values indicated that the set of functions
$\{1, \cos x, \cos 2 x, \cos 3 x, \ldots, \sin x, \sin 2 x, \sin 3 x, \ldots\}$
is an orthogonal set on the interval $[-\pi, \pi]$.

An Orthogonal Set of Functions on $[-p, p]$

This set can be generalized by using a simple change of variables $t=\frac{\pi x}{p}$ to obtain the orthogonal set on $[-p, p]$

$$
\left\{1, \cos \frac{n \pi x}{p}, \left.\sin \frac{m \pi x}{p} \right\rvert\, n, m \in \mathbb{N}\right\}
$$

There are many interesting and useful orthogonal sets of functions (on appropriate intervals). What follows is readily extended to other such (infinite) sets.

Fourier Series

Suppose $f(x)$ is defined for $-\pi<x<\pi$. We would like to know how to write f as a series in terms of sines and cosines.

Task: Find coefficients (numbers) $a_{0}, a_{1}, a_{2}, \ldots$ and b_{1}, b_{2}, \ldots such that ${ }^{1}$

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)
$$

[^0]
Fourier Series

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) .
$$

The question of convergence naturally arises when we wish to work with infinite series. To highlight convergence considerations, some authors prefer not to use the equal sign when expressing a Fourier series and instead write

$$
f(x) \sim \frac{a_{0}}{2}+\cdots
$$

Herein, we'll use the equal sign with the understanding that equality may not hold at each point.

Convergence will be address later.

Finding an Example Coefficient
For a known function f defined on $(-\pi, \pi)$, assume there is such a series ${ }^{2}$. Let's find the coefficient b_{4}.

Molt. by $\sin (4 x)$

$$
f(x) \sin (4 x)=\frac{a_{0}}{2} \sin \left(4_{x}\right)+\sum_{n=1}^{\infty}\left(a_{n} \cos n x \sin (4 x)+b_{n} \sin n x \sin (4 x)\right) .
$$

Integrate both sides from $-\pi$ to π

$$
\begin{aligned}
& \int_{-\pi}^{\pi} f(x) \sin (4 x) d x= \\
& \quad \int_{-\pi}^{\pi}\left(\frac{a_{0}}{2} \sin (4 x)+\sum_{n=1}^{\infty} a_{n} \cos (n x) \sin (4 x)+b_{n} \sin (n x) \sin (4 x)\right) d x
\end{aligned}
$$

${ }^{2}$ We will also assume that the order of integrating and summing can be interchanged.

$$
\begin{aligned}
& \langle\sin (n x), \sin (4 x)\rangle= \begin{cases}0, & n \neq 4 \\
\pi, & n=4\end{cases} \\
& \int_{-\pi}^{\pi} f(x) \sin (4 x) d x=\pi b_{4}
\end{aligned}
$$

$$
\Rightarrow \quad b_{4}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (4 x) d x
$$

Finding Fourier Coefficients

Note that there was nothing special about seeking the $4^{\text {th }}$ sine coefficient b_{4}. We could have just as easily sought b_{m} for any positive integer m. We would simply start by introducing the factor $\sin (m x)$.

Moreover, using the same orthogonality property, we could pick on the a's by starting with the factor $\cos (m x)$-including the constant term since $\cos (0 \cdot x)=1$. The only minor difference we want to be aware of is that

$$
\int_{-\pi}^{\pi} \cos ^{2}(m x) d x= \begin{cases}2 \pi, & m=0 \\ \pi, & m \geq 1\end{cases}
$$

Careful consideration of this sheds light on why it is conventional to take the constant to be $\frac{a_{0}}{2}$ as opposed to just a_{0}.

The Fourier Series of $f(x)$ on $(-\pi, \pi)$

The Fourier series of the function f defined on $(-\pi, \pi)$ is given by

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) .
$$

Where

$$
\begin{aligned}
& a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x \\
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x, \quad \text { and } \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x
\end{aligned}
$$

Some Useful Observations

Integer multiples of π :

- For every integer $n, \sin (n \pi)=0$,
- and $\cos (n \pi)=1$ if n is even and $\cos (n \pi)=-1$ if n is odd. Thus we write

$$
\cos (n \pi)=(-1)^{n}
$$

Symmetry:

- The sine function is odd, $\sin (-\theta)=-\sin (\theta)$,
- and the cosine function is even, $\cos (-\theta)=\cos (\theta)$.

Example
Find the Fourier series of the piecewise defined function

$$
\begin{aligned}
& f(x)= \begin{cases}0, & -\pi<x<0 \\
x, & 0 \leq x<\pi\end{cases} \\
& f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right) \\
& a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{\pi} \int_{-\pi}^{0} 0 d x+\frac{1}{\pi} \int_{0}^{\pi} x d x
\end{aligned}
$$

$$
\begin{aligned}
a_{0} & =\frac{\pi}{2} \\
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x=\frac{1}{\pi} \int_{-\pi}^{0} 0 \cdot \operatorname{cor}(n x) d x+\frac{1}{\pi} \int_{0}^{\pi} x \operatorname{cor}(n x) d x \\
& =\frac{1}{\pi} \int_{0}^{\pi} x \operatorname{Cor}(n x) d x \quad \text { Parts } \quad n=x \quad d n=d x \\
& =\frac{1}{\pi}\left[\left.\frac{x}{n} \sin (n x)\right|_{0} ^{\pi}-\frac{1}{n} \int_{0}^{\pi} \sin (n x) d x\right]=\frac{1}{n} \sin (n x) \quad d v=\cos (n x) d x \\
& =\frac{1}{\pi}\left[\frac{\pi}{n} \sin (n \pi)-\frac{0}{n} \sin (0)+\left.\frac{1}{n^{2}} \cos (n x)\right|_{0} ^{\pi}\right. \\
& =\frac{1}{\pi}\left[\frac{1}{n^{2}} \cos (n \pi)-\frac{1}{n^{2}} \operatorname{Cor}(0)\right]
\end{aligned}
$$

November 8, $2017 \quad 20 / 48$

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi n^{2}}\left((-1)^{n}-1\right) \\
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x=\frac{1}{\pi} \int_{-\pi}^{0} 0 \cdot \sin (n x) d x+\frac{1}{\pi} \int_{0}^{\pi} x \sin (n x) d x \\
& =\frac{1}{\pi} \int_{0}^{\pi} x \sin (n x) d x \quad \text { Parts } \quad u=x \quad d u=d x \\
& =\frac{1}{\pi}\left[\left.\frac{-x}{n} \cos (n x)\right|_{0} ^{\pi}+\frac{1}{n} \int_{0}^{\pi} \cos (n x) d x\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\pi}\left[\frac{-\pi}{n} \cos (n \pi)-\frac{0}{n} \operatorname{cor}(0)+\left.\frac{1}{n^{2}} \sin (n x)\right|_{0} ^{\pi}\right. \\
& =\frac{1}{\pi}\left[\frac{-\pi}{n}(-1)^{n}+\frac{1}{n^{2}} \sin (n \pi)-\frac{1}{n^{2}} \sin (0)\right] \\
& =\frac{1}{\pi}\left(\frac{-\pi}{n}\right)(-1)^{n}=\frac{-1}{n}(-1)^{n}=\frac{-(-1)^{n}}{n}=\frac{(-1)^{n+1}}{n} \\
& b_{n}=\frac{(-1)^{n+1}}{n}
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \operatorname{cor}(n x)+b_{n} \sin (n x) \\
& f(x)=\frac{\pi}{4}+\sum_{n=1}^{\infty}\left(\frac{(-1)^{n}-1}{\pi n^{2}} \cos (n x)+\frac{(-1)^{n+1}}{n} \sin (n x)\right)
\end{aligned}
$$

[^0]: ${ }^{1}$ We'll write $\frac{a_{0}}{2}$ as opposed to a_{0} purely for convenience.

