## November 9 Math 3260 sec. 57 Fall 2017

## Section 5.2: The Characteristic Equation

Definition: For $n \times n$ matrix $A$, the expression

$$
\operatorname{det}(A-\lambda I)
$$

is an $n^{\text {th }}$ degree polynomial in $\lambda$. It is called the characteristic polynomial of $A$.

Definition:The equation

$$
\operatorname{det}(A-\lambda I)=0
$$

is called the characteristic equation of $A$.
Theorem: The scalar $\lambda$ is an eigenvalue of the matrix $A$ if and only if it is a root of the characteristic equation.

## Multiplicities

There are two types of multiplicity that can be associated with an eigenvalue $\lambda$ of any given matrix.

Definition: The algebraic multiplicity of an eigenvalue is its multiplicity as a root of the characteristic equation. The geometric multiplicity is the dimension of its corresponding eigenspace.

Example
Find all of the eigenvalues of the matrix $A$. Determine the algebraic and geometric multiplicities of each eigenvalue.

$$
A=\left[\begin{array}{rrr}
7 & 0 & -3 \\
-9 & -2 & 3 \\
18 & 0 & -8
\end{array}\right] \quad \operatorname{det}(A-\lambda I)=\operatorname{det}\left(\left[\begin{array}{ccc}
7-\lambda & 0 & -3 \\
-9 & -2-\lambda & 3 \\
18 & 0 & -8-\lambda
\end{array}\right]\right)
$$

Cofacter expansion down
column 2

$$
\begin{aligned}
& =a_{12}^{\prime \prime} C_{12}+a_{22} C_{22}+a_{32}^{\prime 0} C_{32} \\
& =(-2-\lambda)\left|\begin{array}{cc}
7-\lambda & -3 \\
18 & -8-\lambda
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =(-2-\lambda)((7-\lambda)(-8-\lambda)+54) \\
& =(-2-\lambda)\left(-56+8 \lambda-7 \lambda+\lambda^{2}+54\right) \\
& =(-2-\lambda)\left(\lambda^{2}+\lambda-2\right) \\
& =-(2+\lambda)(\lambda+2)(\lambda-1) \\
& =-(\lambda+2)^{2}(\lambda-1)
\end{aligned}
$$

Char. eqn. $0=-(\lambda+2)^{2}(\lambda-1)$ the eigenvalues are

$$
\lambda_{1}=\lambda_{2}=-2, \quad \lambda_{3}=1
$$

$\lambda_{1}=-2$ has algebraic multiplicity two. $\lambda_{3}=1$ has algebraic nuetiplicits one.

Well find bases for the risen spaces.
For $\lambda_{1}=\lambda_{2}=-2$

$$
\begin{aligned}
& (A-(-2) I) \vec{x}=0 \\
& {\left[\begin{array}{ccc}
9 & 0 & -3 \\
-9 & 0 & 3 \\
18 & 0 & -6
\end{array}\right] \stackrel{\text { ret }}{\longrightarrow}\left[\begin{array}{ccc}
1 & 0 & -1 / 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \begin{array}{l}
x_{1}=\frac{1}{3} x_{3} \\
x_{2}, x_{3} \\
\text { free }
\end{array}}
\end{aligned}
$$

Eigenvectors look like

$$
\hat{x}=x_{2}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{l}
1 / 3 \\
0 \\
1
\end{array}\right]
$$

$A$ basis is $\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}1 / 3 \\ 0 \\ 1\end{array}\right]\right\}$.
The geometric multiplicity for $\lambda_{1}=\lambda_{2}=-2$ is two.

For $\quad \lambda_{3}=1$

$$
\begin{array}{r}
A-1 I=\left[\begin{array}{ccc}
6 & 0 & -3 \\
-9 & -3 & 3 \\
18 & 0 & -9
\end{array}\right] \xrightarrow{\text { ret }}\left[\begin{array}{ccc}
1 & 0 & -1 / 2 \\
0 & 1 & 1 / 2 \\
0 & 0 & 0
\end{array}\right] \\
\\
x_{1}=\frac{1}{2} x_{3} \quad x_{7} \text {-free } \\
x_{2}=\frac{-1}{2} x_{3}
\end{array}
$$

An eigen vector looks like

$$
\vec{x}=x_{3}\left[\begin{array}{c}
1 / 2 \\
-1 / 2 \\
1
\end{array}\right]
$$

a basis is $\left\{\left[\begin{array}{c}1 / 2 \\ -1 / 2 \\ 1\end{array}\right]\right\}$.

The geometries metiplicits for $\lambda_{3}=1$ is one.

## Similarity

Definition: Two $n \times n$ matrices $A$ and $B$ are said to be similar if there exists an invertible matrix $P$ such that

$$
B=P^{-1} A P
$$

The mapping $A \mapsto P^{-1} A P$ is called a similarity transformation ${ }^{1}$.

Theorem: If $A$ and $B$ are similar matrices, then they have the same characteristic equation, and hence the same eigenvalues.
${ }^{1}$ Note that similarity is NOT related to being row equivalent.

If $B=P^{-1} A P$, then $\operatorname{det}(B-\lambda I)=\operatorname{det}(A-\lambda I)$
Note that $I=P^{-1} P=P^{-1} I P$

$$
\begin{aligned}
\operatorname{det}(B-\lambda I) & =\operatorname{dt}\left(P^{-1} A P \cdot \lambda I\right) \\
& =\operatorname{dt}\left(P^{-1} A P-\lambda P^{-1} I P\right) \\
& =\operatorname{dt}\left(P^{-1}(A P-\lambda I P)\right) \\
& =\operatorname{det}\left(P^{-1}(A-\lambda I) P\right) \\
& =\operatorname{dt}\left(P^{-1}\right) \operatorname{dt}(A-\lambda I) \operatorname{dt}(P)
\end{aligned}
$$

scaler multi. Commutes

$$
\begin{aligned}
& =\underbrace{\operatorname{dt}\left(P^{-1}\right) \operatorname{det}}_{1}(P) \operatorname{dt}(A-\lambda I) \\
& =\operatorname{det}(A-\lambda I)
\end{aligned}
$$

Example
Show that $A=\left[\begin{array}{cc}-18 & 42 \\ -7 & 17\end{array}\right]$ and $B=\left[\begin{array}{cc}3 & 0 \\ 0 & -4\end{array}\right]$ are similar with the matrix $P$ for the similarity transformation given by $P=\left[\begin{array}{ll}2 & 3 \\ 1 & 1\end{array}\right]$.

$$
\begin{aligned}
& P^{-1}= \frac{1}{d t(P)}\left[\begin{array}{cc}
1 & -3 \\
-1 & 2
\end{array}\right]=\frac{1}{-1}\left[\begin{array}{cc}
1 & -3 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{cc}
-1 & 3 \\
1 & -2
\end{array}\right] \\
& P^{-1} A P=\left[\begin{array}{cc}
-1 & 3 \\
1 & -2
\end{array}\right]\left[\begin{array}{cc}
-18 & 42 \\
-7 & 17
\end{array}\right]\left[\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right] \\
&=\left[\begin{array}{cc}
-1 & 3 \\
1 & -2
\end{array}\right]\left[\begin{array}{cc}
6 & -12 \\
3 & -4
\end{array}\right]=\left[\begin{array}{ll}
3 & 0 \\
0 & -4
\end{array}\right]=B
\end{aligned}
$$

Example Continued...
Show that the columns of $P$ are eigenvectors of $A$ where

$$
\begin{gathered}
A=\left[\begin{array}{cc}
-18 & 42 \\
-7 & 17
\end{array}\right] \text { and } P=\left[\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right] . \\
A\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{cc}
-18 & 42 \\
-7 & 17
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
6 \\
3
\end{array}\right]=3\left[\begin{array}{l}
2 \\
1
\end{array}\right] \in \operatorname{ligh}_{\text {vector }} \lambda_{1}=3 \\
A\left[\begin{array}{l}
3 \\
1
\end{array}\right]=\left[\begin{array}{cc}
-18 & 42 \\
-7 & 17
\end{array}\right]\left[\begin{array}{l}
3 \\
1
\end{array}\right]=\left[\begin{array}{c}
-12 \\
-4
\end{array}\right]=-4\left[\begin{array}{l}
3 \\
1
\end{array}\right] \in \begin{array}{l}
\text { fosingetor } \lambda_{2}=-4
\end{array}
\end{gathered}
$$

Eigenvalues of a real matrix need not be real Find the eigenvalues of the matrix $A=\left[\begin{array}{cc}4 & 3 \\ -5 & 2\end{array}\right]$.

$$
\begin{aligned}
& \text { Charactaictic cqn } \\
& \begin{aligned}
\operatorname{dt}(A-\lambda I) & =d t\left(\left[\begin{array}{cc}
4-\lambda & 3 \\
-5 & 2-\lambda
\end{array}\right]\right)=(4-\lambda)(2-\lambda)+15 \\
& =\lambda^{2}-6 \lambda+8+15=\lambda^{2}-6 \lambda+23 \\
0 & =\lambda^{2}-6 \lambda+23=\lambda^{2}-6 \lambda+9+14 \\
0 & =(\lambda-3)^{2}+14
\end{aligned}
\end{aligned}
$$

The roots $-M=(\lambda-3)^{2} \Rightarrow \lambda-3= \pm \sqrt{-14}$

$$
\lambda=3 \pm \sqrt{14} i
$$

