November 9 Math 3260 sec. 57 Fall 2017

Section 5.2: The Characteristic Equation

Definition: For $n \times n$ matrix A, the expression

$$det(A - \lambda I)$$

is an n^{th} degree polynomial in λ . It is called the **characteristic polynomial** of A.

Definition:The equation

$$\det(A - \lambda I) = 0$$

is called the **characteristic equation** of *A*.

Theorem: The scalar λ is an eigenvalue of the matrix A if and only if it is a root of the characteristic equation.

Multiplicities

There are two types of *multiplicity* that can be associated with an eigenvalue λ of any given matrix.

Definition: The **algebraic multiplicity** of an eigenvalue is its multiplicity as a root of the characteristic equation. The **geometric multiplicity** is the dimension of its corresponding eigenspace.

Example

Find all of the eigenvalues of the matrix A. Determine the algebraic and geometric multiplicities of each eigenvalue.

$$A = \begin{bmatrix} 7 & 0 & -3 \\ -9 & -2 & 3 \\ 18 & 0 & -8 \end{bmatrix}$$

$$A = \begin{bmatrix} 7 & 0 & -3 \\ -9 & -2 & 3 \\ 18 & 0 & -8 \end{bmatrix} \qquad \det(A - \lambda L) = \det \begin{pmatrix} 7 - \lambda & 0 & -3 \\ -9 & -2 - \lambda & 3 \\ 18 & 0 & -8 - \lambda \end{pmatrix}$$

Cofader expression down

$$= A_{12} C_{12} + A_{21} C_{11} + A_{32} C_{32}$$

$$= (-2 - \lambda) \begin{vmatrix} 3 - \lambda & -3 \\ 18 & -8 - \lambda \end{vmatrix}$$

$$= (-2-\lambda) \left((\gamma-\lambda)(-9-\lambda) + 54 \right)$$

$$= (-2-\lambda) \left(-56+8\lambda-7\lambda+\lambda^2+54 \right)$$

$$= (-2-\lambda) \left(-\lambda^2+\lambda-2 \right)$$

$$= -(2+\lambda) \left(\lambda+2 \right) (\lambda-1)$$

$$= -(\lambda+2)^2 (\lambda-1)$$

Char. eqn.
$$0 = -(\lambda+2)^2(\lambda-1)$$
 the eigenvalue are $\lambda_1 = \lambda_2 = -2$, $\lambda_3 = 1$.

Well find bases for the eigen spaces.

Eigenvectors look like

$$\vec{\chi} = \chi_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \chi_7 \begin{bmatrix} '13 \\ 0 \\ 1 \end{bmatrix}$$

A basis is { [0], [13] }.

The geometric multiplicity for 1,= 2= 2
is two.

$$A - 1I = \begin{bmatrix} 6 & 0 & -3 \\ -9 & -3 & 3 \\ 18 & 0 & -9 \end{bmatrix} \xrightarrow{\text{tref}} \begin{bmatrix} 1 & 0 & -1/2 \\ 0 & 1 & 1/2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\chi = \frac{1}{2} \times_3$$
 $\chi_7 - free$
 $\chi_3 = \frac{1}{2} \times_3$

$$\sqrt{\chi} = \chi_3 \begin{bmatrix} \eta_2 \\ -\eta_2 \end{bmatrix}$$

a hasis is
$$\left\{ \begin{bmatrix} y_2 \\ -y_2 \\ 1 \end{bmatrix} \right\}$$

The geometric meltiplicity for 12=1 is one.

Similarity

Definition: Two $n \times n$ matrices A and B are said to be **similar** if there exists an invertible matrix P such that

$$B = P^{-1}AP$$
.

The mapping $A \mapsto P^{-1}AP$ is called a **similarity transformation**¹.

Theorem: If A and B are similar matrices, then they have the same characteristic equation, and hence the same eigenvalues.

¹Note that similarity is NOT related to being row equivalent.

If
$$B = P^{-1}AP$$
, then $\det(B - \lambda I) = \det(A - \lambda I)$
Note that $I = P^TP = P^TIP$

$$\det(B - \lambda I) = \det(P^TAP - \lambda I)$$

$$= \det(P^TAP - \lambda P^TIP)$$

$$= dt \left(\vec{p}' \left(AP - \lambda^{TP} \right) \right)$$

=
$$dt(\tilde{\rho}')$$
 $dt(A-\lambda I)$ $dt(P)$

scoler mult, Commutes

Example

Show that $A = \begin{bmatrix} -18 & 42 \\ -7 & 17 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 0 \\ 0 & -4 \end{bmatrix}$ are similar with the

matrix
$$P$$
 for the similarity transformation given by $P = \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix}$.

$$\beta_{1}: \frac{q+(b)}{1} \begin{bmatrix} 1 & 3 \\ 1 & 3 \end{bmatrix} = \frac{-1}{1} \begin{bmatrix} -1 & 5 \\ 1 & -3 \end{bmatrix} = \begin{bmatrix} -1 & 3 \\ 1 & 3 \end{bmatrix}$$

$$PAP = \begin{bmatrix} -1 & 2 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} -18 & 42 \\ -7 & 17 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 3 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 6 & -12 \\ 3 & -4 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & -4 \end{bmatrix} = B$$

November 8, 2017 13 / 50

Example Continued...

Show that the columns of P are eigenvectors of A where

$$A = \begin{bmatrix} -18 & 42 \\ -7 & 17 \end{bmatrix} \text{ and } P = \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix}.$$

$$A \begin{bmatrix} 2 \\ 1 \end{bmatrix} : \begin{bmatrix} -18 & 42 \\ -2 & 12 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} : \begin{bmatrix} 6 \\ 3 \end{bmatrix} : 3 \begin{bmatrix} 2 \\ 1 \end{bmatrix} \notin \text{for } \lambda, = 3$$

$$A \begin{bmatrix} 3 \\ 1 \end{bmatrix} : \begin{bmatrix} -18 & 42 \\ -2 & 12 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} : \begin{bmatrix} -12 \\ -4 \end{bmatrix} : -4 \begin{bmatrix} 3 \\ 1 \end{bmatrix} \notin \text{for } \lambda_2 = 4$$

Eigenvalues of a real matrix need not be real

Find the eigenvalues of the matrix $A = \begin{bmatrix} 4 & 3 \\ -5 & 2 \end{bmatrix}$.

Characteristic egn

Let
$$(A-\lambda I) = dx$$

$$= \lambda^2 - 6\lambda + 8 + 15 = \lambda^2 - 6\lambda + 23$$

$$0 = \lambda^2 - 6\lambda + 23 = \lambda^2 - 6\lambda + 9 + 14$$

$$0 = (\lambda - 3)^2 + 14$$

The roots $-14 = (\lambda - 3)^2 \Rightarrow \lambda - 3 = \pm \sqrt{-14}$

$$\lambda = 3 \pm \sqrt{14} i$$

