October 10 MATH 1113 sec. 52 Fall 2018

Section 5.3: Inverse of an Exponential Function

Definition: Let a > 0 and $a \neq 1$. For x > 0 define $\log_a(x)$ as a number such that

if
$$y = \log_a(x)$$
 then $x = a^y$.

The function

$$F(x) = \log_a(x)$$

is called the **logarithm function of base** *a*. It has domain $(0, \infty)$, range $(-\infty, \infty)$, and if $f(x) = a^x$ then

$$F(x)=f^{-1}(x).$$

A D N A D N A D N A D N

October 9, 2018

1/17

In particular

- ► $\log_a(a^x) = x$ for every real x, and
- $a^{\log_a(x)} = x$ for every x > 0.

Evaluating Logs with a Calculator

Most logarithms can't be evaluated by hand. For example, $\log_e(70) \approx 4.2485$. No one memorizes that! Calculators tend to have two built in logarithm functions.

- Common Log base 10 denoted as log (note there is no subscript), and log(x) = log(x)
- ► Natural Log base *e* denoted¹ In $\int_{M} (x) = \int_{M} (x) dx$

In Calculus, you'll find that the prefered base is e—the natural log. Base 10 logs still have some use such as in the Richter scale used to measure earthquakes.

¹The order LN instead of NL is probably due to the French name *le Logarithme Naturel* for this log.

Evaluating Logs with a Calculator

Suppose we wish to evaluate $\log_2(15)$. You turn to a calculator, but there is no \log_2 key! Fortunately, you're not out of luck. Every log can be stated in term of any other log by the following theorem:

Theorem: (Change of Base) Let *a*, *b*, and *M* be any positive numbers, then

$$\log_b(M) = rac{\log_a(M)}{\log_a(b)}.$$

What this says is that you can turn your log₂ problem into a log or In problem, and use your machine!

October 9, 2018

3/17

Change of Base

Here's the meat of our theorem again: $\log_b(M) = \frac{\log_a(M)}{\log_a(b)}$.

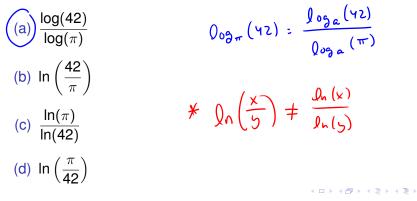
Express $\log_2(15)$ in terms of the natural log. Use a calculator to approximate its value.

$$log_{2}(15) = \frac{ln(15)}{ln(2)}$$

 ≈ 3.9069
 $log_{e}(4x) = ln(4x)$

Here's the meat of our theorem again:
$$\log_b(M) = \frac{\log_a(M)}{\log_a(b)}$$
.

Suppose you wish to evaluate $\log_{\pi}(42)$ using a calculator. Which of the following expressions could be used to find the desired value?



October 9, 2018 5 / 17

Section 5.4: Properties of Logarithms

Let's recall the basic properties of exponentials. The logarithms have analog properties.

イロト イポト イヨト イヨト 一日

October 9, 2018

6/17

Let a > 0, with $a \neq 1$. Then for any real x and y

•
$$a^{x+y} = a^x \cdot a^y$$

• $a^{x-y} = \frac{a^x}{a^y}$
• $(a^x)^y = a^{xy}$

Log of a Product

Theorem: Let *M* and *N* be any positive numbers and a > 0 with $a \neq 1$. Then

$$\log_a(MN) = \log_a(M) + \log_a(N).$$

Illustrative Example:

 $\log_2(16) = \log_2(2 \cdot 8) = \log_2(2) + \log_2(8).$

Note that this equation is the true statement

4 = 1 + 3.

October 9, 2018 7 / 17

イロト 不得 トイヨト イヨト 二日

Here's the meat of our theorem: $\log_a(MN) = \log_a(M) + \log_a(N)$.

Which of the following is equivalent to $log_3(15)$?

(a)
$$\log_3(5) + \log_3(3)$$

(b)
$$\log_3(10) + \log_3(5)$$

(c) $\log_3(3) \cdot \log_3(5)$

(d) all of the above are equivalent

(e) none of the above is equivalent

$$= l_{033}(5.3)$$

= $l_{033}(5) + l_{033}(3)$

Log of a Power

Theorem: Let M be any positive number, a be any positive number different from 1, and p be any real number. Then

 $\log_a(M^p) = p \log_a(M).$

Illustrative Example:

$$\log_2(64) = \log_2(4^3) = 3\log_2(4).$$

Note that this equation is the true statement

 $\mathbf{6}=\mathbf{3}\cdot\mathbf{2}.$

Here's the meat of our theorem: $\log_a(M^p) = p \log_a(M)$. Which of the following is equivalent to $\log_7(125)$?

(a) $5 \log_7(25)$ (b) $3 \log_7(5)$ (c) $(\log_7(5))^3$ $: \log_{\mathcal{F}}(5^3)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

October 9, 2018

10/17

(d) all of the above are equivalent

(e) none of the above is equivalent

Log of a Quotient

Theorem: Let *M* and *N* be any positive numbers and a > 0 with $a \neq 1$. Then

$$\log_a\left(\frac{M}{N}\right) = \log_a(M) - \log_a(N).$$

Illustrative Example:

$$\log_2(4) = \log_2\left(\frac{16}{4}\right) = \log_2(16) - \log_2(4).$$

Note that this equation is the true statement

$$2 = 4 - 2$$
.

イロト 不得 トイヨト イヨト 二日

October 9, 2018

11/17

Here's the meat of our theorem: $\log_a\left(\frac{M}{N}\right) = \log_a(M) - \log_a(N)$.

Which of the following is equivalent to $\log_3(5)$?

(a)
$$\log_3(15) - \log_3(3)$$

(b) $\log_3(10) - \log_3(5)$
(c) $\frac{\log_3(15)}{\log_3(3)}$
(d) all of the above are equivalent

$$\Rightarrow \int_{0\leq_3}(15) - \int_{0\leq_3}(5) + \int_{0\leq_3}(5)$$

October 9, 2018

12/17

(e) none of the above is equivalent