October 10 Math 2306 sec. 57 Fall 2017

Section 10: Variation of Parameters

We are still considering nonhomogeneous, linear ODEs. Consider equations of the form

$$
y^{\prime \prime}+y=\tan x, \quad \text { or } \quad x^{2} y^{\prime \prime}+x y^{\prime}-4 y=e^{x} .
$$

The method of undetermined coefficients is not applicable to either of these. We require another approach.

Variation of Parameters

For the equation in standard form

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x)=g(x)
$$

suppose $\left\{y_{1}(x), y_{2}(x)\right\}$ is a fundamental solution set for the associated homogeneous equation. We seek a particular solution of the form

$$
y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)
$$

where u_{1} and u_{2} are functions we will determine (in terms of y_{1}, y_{2} and g).

This method is called variation of parameters.

Variation of Parameters: Derivation of y_{p}

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=g(x)
$$

Set $\quad y_{p}=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)$

$$
y_{p}^{\prime}=u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}+\underbrace{u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}}_{0_{0}^{\prime \prime}}
$$

we have 2 unknowns and one equation. Sw well impose a second equation,

Well impose

$$
y_{p}^{\prime \prime}=u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime}
$$

$$
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0
$$

Substitute r $y_{p}^{\prime \prime}+P(x) y_{p}^{\prime}+Q(x) y_{p}=g(x)$
Remember that $\quad y_{i}^{\prime \prime}+P(x) y_{i}^{\prime}+Q(x) y_{i}=0, \quad$ for $i=1,2$

$$
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime}+P(x)\left(u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}\right)+Q(x)\left(u_{1} y_{1}+u_{2} y_{2}\right)=g(x)
$$

Collect bs u_{1} and u_{2}

$$
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{1}(\underbrace{y_{1}^{\prime \prime}+P(x) y_{1}^{\prime}+Q(x) y_{1}}_{0_{1}^{\prime \prime}})+u_{2}^{(\underbrace{\left(y_{2}^{\prime \prime}+P(x) y_{2}^{\prime}+Q(x) y_{2}\right)}_{0})}=g(x)
$$

Since y_{1} and y_{2} solve the bono gemous equation

So ow second equation ir

$$
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=g(x)
$$

So the u's solve the system

$$
\begin{aligned}
& u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \\
& u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=g(x)
\end{aligned}
$$

In matrix format, this is

$$
\left(\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right)\binom{u_{1}^{\prime}}{u_{2}^{\prime}}=\binom{0}{g}
$$

this is the matrix for the wronskion of b, and b_{2}

Crammer's Rule:

$$
\left.\begin{gathered}
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{e}{f} \\
x_{1}=\frac{D_{1}}{D}, \quad x_{2}=\frac{D_{2}}{D} \quad \text { where } \\
D_{1}=\left|\begin{array}{ll}
e & b \\
f & d
\end{array}\right| \quad D_{2}=\left|\begin{array}{ll}
a & e \\
c & f
\end{array}\right| \\
\mid a
\end{gathered} \right\rvert\,
$$

and $D=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$ provided $D \neq 0$.

Using Crammers cull

$$
\left(\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right)\binom{u_{1}^{\prime}}{u_{2}^{\prime}}=\binom{0}{g}
$$

$$
u_{1}^{\prime}=\frac{w_{1}}{w} \text { and } u_{2}^{\prime}=\frac{w_{2}}{w}
$$

and $w=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$ the wronskion of y_{1}, y_{2}.

$$
\begin{gathered}
u_{1}=\int \frac{-g y_{2}}{w} d x, u_{2}=\int \frac{g y_{1}}{w} d x \\
y_{p}=u_{1} y_{1}+u_{2} y_{2}
\end{gathered}
$$

Gen. Soln.

$$
y=y_{c}+y_{p}
$$

Example:
Solve the ODE $y^{\prime \prime}+y=\tan x$. This is in Standard
Assoc. Noroguneons: form.

$$
g(x)=\tan x
$$

$$
\begin{aligned}
& y^{\prime \prime}+y=0 \\
& m^{2}+1=0 \Rightarrow m= \pm i \\
& y_{1}=\cos x, y_{2}=\operatorname{Sin} x
\end{aligned}
$$

Wronskion $W=\left|\begin{array}{cc}\cos x & \sin x \\ -\sin x & \cos x\end{array}\right|=\cos ^{2} x+\sin ^{2} x=1$

$$
\begin{aligned}
u_{1} & =\int \frac{-g y_{2}}{w} d x \quad u_{2}=\int \frac{g y_{1}}{w} d x \\
u_{1} & =\int-\frac{\tan x \sin x}{1} d x=\int-\tan x \sin x d x \\
& =-\int \frac{\sin x}{\cos x} \sin x d x=-\int \frac{\sin ^{2} x}{\cos x} d x \\
& =-\int \frac{1-\cos ^{2} x}{\cos x} d x=-\int\left(\frac{1}{\cos x}-\frac{\cos ^{2} x}{\cos x}\right) d x \\
& =-\int(\sec x-\cos x) d x \\
& =-(\ln |\sec x+\tan x|-\sin x)
\end{aligned}
$$

$$
\begin{aligned}
u_{1} & =-\ln |\sec x+\tan x|+\sin x \\
u_{2} & =\int \frac{\tan x \cos x}{1} d x=\int \frac{\sin x}{\cos x} \cos x d x \\
& =\int \sin x d x=-\cos x \\
& y_{p}=u_{1} y_{1}+u_{2} y_{2} \\
y_{p} & =(-\ln |\sec x+\tan x|+\sin x) \cos x+(-\cos x) \sin x \\
y_{p} & =-\cos x \ln |\sec x+\tan x|+\sin x \cos x-\cos x \sin x
\end{aligned}
$$

$$
y_{p}=-\cos x \ln |\sec x+\tan x|
$$

The geneal al solution to the nonhomogeneous ODE is

$$
y=c_{1} \cos x+c_{2} \sin x-\cos x \ln |\sec x+\tan x|
$$

Example:
Solve the ODE

$$
x^{2} y^{\prime \prime}+x y^{\prime}-4 y=\ln x
$$

given that $y_{c}=c_{1} x^{2}+c_{2} x^{-2}$ is the complementary solution.
Stander form:

$$
y^{\prime \prime}+\frac{1}{x} y^{\prime}-\frac{4}{x^{2}} y=\frac{\ln x}{x^{2}}
$$

$$
g(x)=\frac{\ln x}{x^{2}}, \quad y_{1}=x^{2}, \quad y_{2}=x^{-2}
$$

Wronstion

$$
u_{1}=\int \frac{-\delta y_{2}}{w} d x
$$

$$
\begin{aligned}
& W=\left|\begin{array}{cc}
x^{2} & x^{-2} \\
2 x & -2 x^{-3}
\end{array}\right|=-2 x^{-1}-2 x^{-1}=-4 x^{-1} \\
& d x
\end{aligned}
$$

$$
u_{1}=\int \frac{-\left(\frac{\ln x}{x^{2}}\right) x^{-2}}{-4 x^{-1}} d x=\frac{1}{4} \int x^{-3} \ln x d x
$$

Int. by parts:

$$
\begin{array}{ll}
u=\ln x & d u=\frac{1}{x} d x \\
v=-\frac{1}{2} x^{-2} & d v=x^{-3} d x
\end{array}
$$

$$
\begin{aligned}
u_{1} & =\frac{1}{4}\left(\frac{-1}{2} x^{-2} \ln x-\int \frac{-1}{2} x^{-2} \cdot \frac{1}{x} d x\right) \\
& =\frac{1}{4}\left(\frac{-1}{2} x^{-2} \ln x+\frac{1}{2} \int x^{-3} d x\right) \\
& =\frac{1}{4}\left(\frac{-1}{2} x^{-2} \ln x-\frac{1}{4} x^{-2}\right)=\frac{-x^{-2}}{16}(2 \ln x+1)
\end{aligned}
$$

$$
u_{2}=\int \frac{\left(\frac{\ln x}{x^{2}}\right) \cdot x^{2}}{-4 x^{-1}} d x=\frac{-1}{4} \int x \ln x d x
$$

Int by parts

$$
\begin{aligned}
u & =\ln x \\
v & =\frac{x^{2}}{2} \quad d u=\frac{1}{x} d x \\
u_{2} & =\frac{-1}{4}\left(\frac{x^{2}}{2} \ln x-\int \frac{x^{2}}{2} \cdot \frac{1}{x} d x\right) \\
& =\frac{-1}{4}\left(\frac{x^{2}}{2} \ln x-\frac{1}{2} \int x d x\right) \\
& =\frac{-1}{4}\left(\frac{x^{2}}{2} \ln x-\frac{1}{4} x^{2}\right)=\frac{-x^{2}}{16}(2 \ln x-1)
\end{aligned}
$$

$$
\begin{aligned}
y_{p} & =u_{1} y_{1}+u_{2} y_{2} \\
y_{p} & =\frac{-x^{-2}}{16}(2 \ln x+1) x^{2}-\frac{x^{2}}{16}(2 \ln x-1) x^{-2} \\
& =\frac{-1}{8} \ln x-\frac{1}{16}-\frac{1}{8} \ln x+\frac{1}{16} \\
& =\frac{-1}{4} \ln x
\end{aligned}
$$

The geneal solution is

$$
y=c_{1} x^{2}+c_{2} x^{-2}-\frac{1}{4} \ln x
$$

