October 10 Math 3260 sec. 58 Fall 2017

Section 4.4: Coordinate Systems

Given an ordered basis B = {b1,...,b,} for a vector space V, we
noted that the coefficients in the linear combination x = ¢1by + - - - c;b,,
are unique for a given x. This allows for an unambiguous definition of
coordinate vectors.

Definition: Let B = {b¢,...,b,} be an ordered basis of the vector
space V. For each x in V we define the coordinate vector of x
relative to the basis 5 to be the unique vector (cy,...,cy) iNR"
where these entries are the weights x = ¢1by + - - - ¢c,b).

We'll use the notation [x]z to denote such a coorindate vector.
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For Example

For the elementary basis B = {1, t, 12, {3} (in that order) in 3, a typical
vector p(t) = po + p1t + p2t2 + pst® would have coordinate vector in R?,

Po
[p]B — P1

Ps3
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Coordinates in R”

Let B = {b4,...,b,} be an ordered basis of R". Then the change of
coordinate mapping x — [X|z is the linear transformation defined by

Xz = Pg'x

where the matrix
Pg=[by by --- by
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Let B = {by,bq,b3} where by = { 0

X1
Forx= | x2 |, find [X]5.
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Theorem: Coordinate Mapping

Let B={by,...,bs} be an ordered basis for a vector space V. Then
the coordinate mapping x — [X]|z is a one to one mapping of V onto
R".

Remark: When such a mapping exists, we say that V is isomorphic
to R". Properties of subsets of V, such as linear dependence, can be
discerned from the coordinate vectors in R".
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Example
Use coordinate vectors to determine if the set {p, q,r} is linearly
dependent or independent in Ps.

p()y=1-22, q(t)=3t+t3, rt)=1+t
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Example

Let H be the subset of M2*2 of matrices of the form [ Z _Z }

(a) Show that H is a subspace of M?*2 by finding a set S of vectors
such that H =Span(S).
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Example

(b) Demonstrate that the set S is a basis, or remove elements of Sin
order to obtain a basis Bfor H. o . 4 Lags,
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(c) Consider the mapping x — [X]z for your basis. Determine n such
that H is isomorphic to R". '
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Section 4.5: Dimension of a Vector Space

Theorem: If a vector space V has a basis B = {by,...,b,}, then any

set of vectors in V containing more than n vectors is linearly
dependent.
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Dimension

Corollary: If vector space V has a basis B = {by,...,b,}, then every
basis of V consist of exactly n vectors.

Definition: If V is spanned by a finite set, then V is called finite
dimensional. In this case, the dimension of V
dimV = the number of vectors in any basis of V.

The dimension of the vector space {0} containing only the zero vector
is defined to be zero—i.e.

dim{0} = 0.

If V is not spanned by a finite set’, then V is said to be infinite
dimensional.

'C°(R) is an example of an infinite dimensional vector space:
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Examples o
(a) Find dim(R"). 1 () =
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(b) Determine dim Col A where A = [ 113 }
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Some Geometry in R3
Give a geometric description of subspaces of R3 of dimension
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Subspaces and Dimension

Theorem: Let H be a subspace of a finite dimensional vector space V.
Then H is finite dimensional and

dimH <dimV.

Moreover, any linearly independent subset of H can be expanded if
needed to form a basis for H.

Theorem: Let V be a vector space with dim V = p where p > 1. Any
linearly independent set in V containing exactly p vectors is a basis for
V. Similarly, any spanning set consisting of exactly p vectors in V is
necessarily a basis for V.
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Column and Null Spaces

Theorem: Let Abe an m x n matrix. Then
dim NulA = the number of free variables in the equation Ax =0,

and
dim ColA = the number of pivot positions in A.
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Example

Find the dimensions of the null and columns spaces of the matrix A.
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Section 4.6: Rank

Definition: The row space, denoted Row A, of an m x n matrix A is
the subspace of R” spanned by the rows of A.

Example: Express the row space of A in term of a span
-2 -5 8 0 -17
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Theorem

If two matrices A and B are row equivalent, then their row spaces are
the same.

In particular, if B is an echelon form of the matrix A, then the nonzero
rows of B form a basis for Row B—and also for Row A since these are

the same space.
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Example
A matrix A along with its rref is shown.

-2 -5 8 0 —-17 10 1 0 1
A i 3 -5 1 5 1901 2203
3 11 -19 7 1 00 0 1 -5
1 7 -13 5 -3 00 0 0 O

(a) Find a basis for Row A and state the dimension dim Row A.
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Example continued ...
(b) Find a basis for Col A and state its dimension.

\ basis S
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Example continued ...
(c) Find a basis for Nul A and state its dimension.
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