October 10 Math 3260 sec. 58 Fall 2017

Section 4.4: Coordinate Systems

Given an ordered basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ for a vector space V, we noted that the coefficients in the linear combination $\mathbf{x}=c_{1} \mathbf{b}_{1}+\cdots c_{n} \mathbf{b}_{n}$ are unique for a given \mathbf{x}. This allows for an unambiguous definition of coordinate vectors.

Definition: Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be an ordered basis of the vector space V. For each \mathbf{x} in V we define the coordinate vector of \mathbf{x} relative to the basis \mathcal{B} to be the unique vector $\left(c_{1}, \ldots, c_{n}\right)$ in \mathbb{R}^{n} where these entries are the weights $\mathbf{x}=c_{1} \mathbf{b}_{1}+\cdots c_{n} \mathbf{b}_{n}$.

We'll use the notation $[\mathbf{x}]_{\mathcal{B}}$ to denote such a coorindate vector.

For Example

For the elementary basis $\mathcal{B}=\left\{1, t, t^{2}, t^{3}\right\}$ (in that order) in \mathbb{P}_{3}, a typical vector $\mathbf{p}(t)=p_{0}+p_{1} t+p_{2} t^{2}+p_{3} t^{3}$ would have coordinate vector in \mathbb{R}^{4},

$$
[\mathbf{p}]_{\mathcal{B}}=\left[\begin{array}{l}
p_{0} \\
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right] .
$$

Coordinates in \mathbb{R}^{n}

Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be an ordered basis of \mathbb{R}^{n}. Then the change of coordinate mapping $\mathbf{x} \mapsto[\mathbf{x}]_{\mathcal{B}}$ is the linear transformation defined by

$$
[\mathbf{x}]_{\mathcal{B}}=P_{\mathcal{B}}^{-1} \mathbf{x}
$$

where the matrix

$$
P_{\mathcal{B}}=\left[\begin{array}{llll}
\mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{n}
\end{array}\right] .
$$

Example

Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{1}, \mathbf{b}_{3}\right\}$ where $\mathbf{b}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$, and $\mathbf{b}_{3}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
For $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$, find $[\mathbf{x}]_{\mathcal{B}}$.

$$
\begin{aligned}
& P_{B}=\left[\vec{b}_{1} \vec{b}_{2} \vec{b}_{3}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] \\
& P_{B}^{-1}=\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
[\vec{x}]_{B}=P_{B}^{-1} \vec{x}=\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
x_{1}-x_{2} \\
x_{2}-x_{3} \\
x_{3}
\end{array}\right]
$$

Theorem: Coordinate Mapping

Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be an ordered basis for a vector space V. Then the coordinate mapping $\mathbf{x} \mapsto[\mathbf{x}]_{\mathcal{B}}$ is a one to one mapping of V onto \mathbb{R}^{n}.

Remark: When such a mapping exists, we say that V is isomorphic to \mathbb{R}^{n}. Properties of subsets of V, such as linear dependence, can be discerned from the coordinate vectors in \mathbb{R}^{n}.

Example
Use coordinate vectors to determine if the set $\{\mathbf{p}, \mathbf{q}, \mathbf{r}\}$ is linearly dependent or independent in \mathbb{P}_{2}.

$$
\mathbf{p}(t)=1-2 t^{2}, \quad \mathbf{q}(t)=3 t+t^{2}, \quad \mathbf{r}(t)=1+t
$$

We can use the elementary basis $\left\{1, t, t^{2}\right\}=\mathbb{B}$

$$
\begin{aligned}
& {[\vec{p}]_{B}=\left[\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right], \quad[\stackrel{\rightharpoonup}{q}]_{B}=\left[\begin{array}{l}
0 \\
3 \\
1
\end{array}\right], \quad[\vec{r}]_{\vec{B}}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]} \\
& \vec{p}=1 \cdot 1+0 \cdot t+(-2) t^{2}, \vec{q}=0 \cdot 1+3 \cdot t+1 \cdot t^{2}, \vec{r}=1 \cdot 1+1 \cdot t+0 \cdot t^{2}
\end{aligned}
$$

We con use a determinant.
Lat $A=\left[\begin{array}{lll}{[\vec{p})_{B}} & {[\vec{q}}\end{array}\right]_{\beta}\left[\begin{array}{ll}\vec{r}]_{\beta}\end{array}\right]$

$$
\begin{aligned}
A & =\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 3 & 1 \\
-2 & 1 & 0
\end{array}\right] \quad \operatorname{dt}(A)=a_{11} C_{11}+a_{12} C_{12}+a_{13} C_{13} \\
\operatorname{det}(A) & =1 \cdot\left|\begin{array}{ll}
3 & 1 \\
1 & 0
\end{array}\right|+0 \cdot| |+1 \cdot\left|\begin{array}{cc}
0 & 3 \\
-21
\end{array}\right| \\
& =1(-1)+1(6)=5 \neq 0
\end{aligned}
$$

The columns of A ore livears independent, hence $\{\vec{p}, \vec{q}, \vec{r}\}$ is liven'y independent.

Example

Let H be the subset of $M^{2 \times 2}$ of matrices of the form $\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$.
(a) Show that H is a subspace of $M^{2 \times 2}$ by finding a set S of vectors such that $H=\operatorname{Span}(S)$.

Let \vec{u} be in H. Then $\vec{u}=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$ for some real a, b.

$$
\begin{aligned}
\vec{u}=\left[\begin{array}{ll}
a & -b \\
b & a
\end{array}\right] & =a\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+b\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \text { we con toke } \\
S & =\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\right\} .
\end{aligned}
$$

Example
(b) Demonstrate that the set S is a basis, or remove elements of S in order to obtain a basis \mathcal{B} for H. S is a basis.
suppose $c_{1}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]+c_{2}\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] \Rightarrow\left[\begin{array}{ll}c_{1} & -c_{2} \\ c_{2} & c_{1}\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
$\Rightarrow c_{1}=c_{2}=0$ Hence S is linear independent,
(c) Consider the mapping $\mathbf{x} \mapsto[\mathbf{x}]_{\mathcal{B}}$ for your basis. Determine n such that H is isomorphic to \mathbb{R}^{n}.

Each linear combination has 2 coefficients - Since the ne are 2 basis vectors. So $n=2$.

Section 4.5: Dimension of a Vector Space
Theorem: If a vector space V has a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$, then any set of vectors in V containing more than n vectors is linearly dependent.

Wive seen the example that if a set of vectors from \mathbb{R}^{n} has more then n vectors, ie. more vectors than entries in each one, the set is liners dependent.

Dimension

Corollary: If vector space V has a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$, then every basis of V consist of exactly n vectors.

Definition: If V is spanned by a finite set, then V is called finite dimensional. In this case, the dimension of V

$$
\operatorname{dim} V=\text { the number of vectors in any basis of } V \text {. }
$$

The dimension of the vector space $\{\mathbf{0}\}$ containing only the zero vector is defined to be zero-i.e.

$$
\operatorname{dim}\{\mathbf{0}\}=0 .
$$

If V is not spanned by a finite set ${ }^{1}$, then V is said to be infinite dimensional.
${ }^{1} C^{0}(\mathbb{R})$ is an example of an infinite dimensional vector space.

Examples
(a) Find $\operatorname{dim}\left(\mathbb{R}^{n}\right)$.

$$
\operatorname{dim}\left(\mathbb{R}^{n}\right)=n
$$

The elementary basis, for example, has 1 vectors $\vec{e}_{1}, \ldots, \vec{e}_{r}$ in it.
(b) Determine $\operatorname{dim} \operatorname{Col} A$ where $A=\left[\begin{array}{ccc}1 & 1 & 3 \\ 0 & 0 & -1\end{array}\right]$.

A basis for col A is $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{c}3 \\ -1\end{array}\right]\right\}$, contains 2 vectors

$$
\operatorname{dim} \operatorname{Col} A=2 .
$$

Some Geometry in \mathbb{R}^{3}
Give a geometric description of subspaces of \mathbb{R}^{3} of dimension
(a) zero

This is $\{\overrightarrow{0}\}$. The origin in \mathbb{R}^{3} is the only, such subspace.
(b) one Must look bile $\operatorname{span}\{\vec{u}\}$ when $\vec{u} \neq \overrightarrow{0}$.
A_{n} line through the origin is such a subspace.
(c) two Must look like $S_{p o_{n}}\{\vec{h}, \vec{v}\}$ with \dot{v}, \vec{v} linear y independent. These are planes through the origin.
(d) three The only one is \mathbb{R}^{3}.

Subspaces and Dimension

Theorem: Let H be a subspace of a finite dimensional vector space V. Then H is finite dimensional and

$$
\operatorname{dim} H \leq \operatorname{dim} V
$$

Moreover, any linearly independent subset of H can be expanded if needed to form a basis for H.

Theorem: Let V be a vector space with $\operatorname{dim} V=p$ where $p \geq 1$. Any linearly independent set in V containing exactly p vectors is a basis for V. Similarly, any spanning set consisting of exactly p vectors in V is necessarily a basis for V.

Column and Null Spaces

Theorem: Let A be an $m \times n$ matrix. Then $\operatorname{dim} \operatorname{Nul} A=$ the number of free variables in the equation $A \mathbf{x}=\mathbf{0}$,
and
$\operatorname{dim} \operatorname{Col} A=$ the number of pivot positions in A.

Example
Find the dimensions of the null and columns spaces of the matrix A.
$A=\left[\begin{array}{cccc}1 & 1 & 1 & 0 \\ -3 & 1 & -7 & -1 \\ 3 & 0 & 6 & 1\end{array}\right]$
\downarrow ref
$\left[\begin{array}{cccc}1 & 0 & 2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \quad \begin{gathered}\text { There are } 3 \text { pivot columns } \\ \operatorname{din} \operatorname{col} A=3 .\end{gathered}$
The nurse of tree vanicbler in $A \vec{x}=\overrightarrow{0}$ is the nurse of non pivot columns. Here that's 1.

So

$$
\operatorname{din} N \text { al } A=1
$$

Section 4.6: Rank

Definition: The row space, denoted Row A, of an $m \times n$ matrix A is the subspace of \mathbb{R}^{n} spanned by the rows of A.

Example: Express the row space of A in term of a span
$\begin{aligned} & A= {\left[\begin{array}{ccccc}-2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 3 & 11 & -19 & 7 & 1 \\ 1 & 7 & -13 & 5 & -3\end{array}\right] \text { we con tolen the rous of } } \\ & A . \\ & \text { Row } A=\text { Spen }\left\{\left[\begin{array}{c}-2 \\ -5 \\ 0 \\ 0 \\ -17\end{array}\right],\left[\begin{array}{c}1 \\ 3 \\ -5 \\ 1 \\ 5\end{array}\right],\left[\begin{array}{c}3 \\ 11 \\ -19 \\ 7 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 7 \\ -13 \\ 5 \\ -3\end{array}\right]\right\}\end{aligned}$

Theorem

If two matrices A and B are row equivalent, then their row spaces are the same.

In particular, if B is an echelon form of the matrix A, then the nonzero rows of B form a basis for Row B —and also for Row A since these are the same space.

Example

A matrix A along with its ref is shown.
$A=\left[\begin{array}{ccccc}-2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 3 & 11 & -19 & 7 & 1 \\ 1 & 7 & -13 & 5 & -3\end{array}\right] \sim\left[\begin{array}{ccccc}1 & 0 & 1 & 0 & 1 \\ 0 & 1 & -2 & 0 & 3 \\ 0 & 0 & 0 & 1 & -5 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
(a) Find a basis for Row A and state the dimension $\operatorname{dim} \operatorname{Row} A$. Using the ron 3 ho rows of ret A, a basis is

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
-2
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right\} \quad \operatorname{dim} \operatorname{Rous} A=3
$$

Example continued ...
(b) Find a basis for $\operatorname{Col} A$ and state its dimension.
pint columns are 1,2 and 4 . A basis is

$$
\left\{\left[\begin{array}{c}
-2 \\
1 \\
3 \\
1
\end{array}\right],\left[\begin{array}{c}
-5 \\
3 \\
11 \\
7
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
7 \\
5
\end{array}\right]\right\} \quad \operatorname{dim} \operatorname{col} A=3
$$

Example continued ...
(c) Find a basis for Vul A and state its dimension.

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & -2 & 0 & 3 \\
0 & 0 & 0 & 1 & -5 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \quad \text { For } \bar{x} \text { in } \operatorname{Nul} A} \\
& x_{1}=-x_{3}-x_{5} \\
& x_{2}=2 x_{3}-3 x_{5} \\
& x_{4}=5 x_{5} \\
& x_{3}, x_{5}-\text { free } \\
& \stackrel{\rightharpoonup}{x}=\left[\begin{array}{c}
-x_{3}-x_{5} \\
2 x_{3}-3 x_{5} \\
x_{3} \\
5 x_{5} \\
x_{5}
\end{array}\right]=x_{3}\left[\begin{array}{c}
-1 \\
2 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
-1 \\
-3 \\
0 \\
5 \\
1
\end{array}\right]
\end{aligned}
$$

A hasis is

$$
\begin{aligned}
& \left\{\left[\begin{array}{c}
-1 \\
2 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
-3 \\
0 \\
5 \\
1
\end{array}\right]\right\} \\
& \operatorname{dim} N a l A=2 .
\end{aligned}
$$

