October 12 MATH 1113 sec. 51 Fall 2018

Section 5.4: Properties of Logarithms

Let's recall the basic properties of exponentials. The logarithms have analog properties.

Let $a>0$, with $a \neq 1$. Then for any real x and y

- $a^{x+y}=a^{x} \cdot a^{y}$
$-a^{x-y}=\frac{a^{x}}{a^{y}}$
- $\left(a^{x}\right)^{y}=a^{x y}$

Log Properties

For M and N positive, and p any real number

$$
\begin{aligned}
\log _{a}(M N) & =\log _{a}(M)+\log _{a}(N) \\
\log _{a}\left(M^{p}\right) & =p \log _{a}(M) \\
\log _{a}\left(\frac{M}{N}\right) & =\log _{a}(M)-\log _{a}(N)
\end{aligned}
$$

These properties hold for any base a. We also have the change of base formula

$$
\log _{b}(M)=\frac{\log _{a}(M)}{\log _{a}(b)}
$$

Example
Write the following as a single logarithm expression.

$$
\begin{aligned}
2 \ln (x) & =\frac{1}{3} \ln (2 y)+3 \ln (3) \\
& =\ln \left(x^{2}\right)-\ln \left((2 y)^{\frac{1}{3}}\right)+\ln \left(3^{3}\right) \\
& =\ln \left(x^{2}\right)-\ln (\sqrt[3]{2 y})+\ln (27) \\
& =\ln \left(x^{2}\right)+\ln (27)-\ln (\sqrt[3]{2 y}) \\
& =\ln \left(27 x^{2}\right)-\ln (\sqrt[3]{2 y}) \\
& =\ln \left(\frac{27 x^{2}}{\sqrt[3]{2 y}}\right)
\end{aligned}
$$

Question

$4 \log (x)+\frac{1}{2} \log (z)$ is equivalent to
(a) $\log \left(\frac{4 x z}{2}\right)=\log \left(x^{4}\right)+\log \left(z^{1 / 2}\right)$
(b) $\log \left(\frac{x^{4}}{\sqrt{z}}\right)$

$$
=\log \left(x^{n}\right)+\log (\sqrt{z})
$$

(c) $\log \left(x^{4} \sqrt{z}\right)$
$=\log \left(x^{4} \sqrt{z}\right)$
(d) all of the above are equivalent
(e) none of the above is equivalent

Example
Use the change of base formula to determine $\log _{3}(x)$ in terms of the logarithm of base $\frac{1}{3}$.

$$
\begin{aligned}
& \log _{\frac{1}{3}}(x)=\frac{\log _{3}(x)}{\log _{3}\left(\frac{1}{3}\right)}=\frac{\log _{3}(x)}{-1}=-\log _{3}(x) \\
& \text { Note } \frac{1}{3}=3^{-1} \quad \log _{3}\left(\frac{1}{3}\right)=\log _{3}\left(3^{-1}\right)=-1 \log _{3}(3) \\
&=-1 \cdot 1=-1
\end{aligned}
$$

Question

True/False If $\log _{2}(x)=y$, then $\log _{2}\left(\frac{1}{x}\right)=-y$.
(a) True and l'm confident.

$$
\begin{aligned}
\log _{2}\left(\frac{1}{x}\right) & =\log _{2}\left(x^{-1}\right) \\
& =-1 \log _{2}(x) \\
& =-1 \cdot y
\end{aligned}
$$

(b) True, but I'm not confident.
(c) False, and I'm confident.
(d) False, but l'm not confident.

$$
=-y
$$

Question

Properties of logarithms are sometimes confused with erroneous, somewhat look-alike expressions. Which of the following is FALSE?
(a) $\ln (x y)=(\ln x)(\ln y)$
(b) $\log _{2}(x)=\ln \left(x^{2}\right)$ It is true that $\log _{2}(x)=\ln \left(x^{\frac{1}{\ln 2}}\right)$
(c) $\log _{4}(2+7)=\log _{4}(2)+\log _{4}(7)$
(d) $(\log (10))^{5}=\log \left(10^{5}\right)$
(e) All of the above are false.

Example: Using the properties together
Express the following as a sum, difference, and multiple of logarithms.

$$
\begin{aligned}
& \log _{a} \sqrt{\frac{a^{3} b^{5}}{\sqrt[3]{a} \sqrt{b+1}}}=\log _{a}\left(\frac{a^{3} b^{5}}{a^{1 / 3}(b+1)^{1 / 2}}\right)^{\frac{1}{2}} \quad \frac{a^{3}}{a^{1 / 3}}=a^{3-\frac{1}{3}}=a^{8 / 3} \\
&=\frac{1}{2} \log _{a}\left(\frac{a^{8 / 3} b^{5}}{(b+1)^{1 / 2}}\right) \\
&=\frac{1}{2}\left(\log _{a}\left(a^{8 / 3} b^{5}\right)-\log _{a}(b+1)^{1 / 2}\right) \\
&=\frac{1}{2}\left(\log _{a}\left(a^{8 / 3}\right)+\log _{a}\left(b^{5}\right)-\log _{a}(b+1)^{\frac{1}{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}\left(\frac{8}{3} \log _{a}(a)+5 \log _{a}(b)-\frac{1}{2} \log _{a}(b+1)\right) \\
& =\frac{1}{2}\left(\frac{8}{3} \cdot 1+5 \log _{a}(b)-\frac{1}{2} \log _{a}(b+1)\right) \\
& =\frac{4}{3}+\frac{5}{2} \log _{a}(b)-\frac{1}{4} \log _{a}(b+1)
\end{aligned}
$$

Question

Which of the following expressions is equivalent to

$$
\log _{2}\left(x^{3} \sqrt{y^{2}-1}\right)
$$

(a) $\log _{2}\left(x^{3}\right)-\frac{1}{2} \log _{2}\left(y^{2}-1\right)$

$$
=\log _{2} x^{3}+\log _{2}\left(y^{2}-1\right)^{1 / 2}
$$

$$
=3 \log _{2} x+\frac{1}{2} \log _{2}\left(y^{2}-1\right)
$$

(c) $3 \log _{2}(x)+\frac{1}{2} \log _{2}\left(y^{2}-1\right)$
(d) $3 \log _{2}(x)+\frac{1}{2} \log _{2}\left(y^{2}\right)-\frac{1}{2} \log _{2}(1)$

Summary of Log Properties

Assume each expression is well defined.
(i) Change of base: $\log _{b}(M)=\frac{\log _{a}(M)}{\log _{a}(b)}$
(ii) Log of Product: $\log _{a}(M N)=\log _{a}(M)+\log _{a}(N)$
(iii) \log of Power: $\log _{a}\left(M^{p}\right)=p \log _{a}(M)$
(iv) Log of Quotient: $\log _{a}\left(\frac{M}{N}\right)=\log _{a}(M)-\log _{a}(N)$
(v) Inverse Function: $a^{\log _{a}(x)}=x$ and $\log _{a}\left(a^{x}\right)=x$
(vi) Special Values: $\log _{a}(1)=0, \log _{a}(a)=1$, and $\log _{a}(0)$ is never defined.

