Oct. 12 Math 1190 sec. 52 Fall 2016

Section 4.1: Related Rates

Motivating Example: A spherical balloon is being filled with air. Suppose that we know that the radius is increasing in time at a constant rate of $2 \mathrm{~mm} / \mathrm{sec}$. Can we determine the rate at which the surface area of the balloon is increasing at the moment that the radius is 10 cm ?

Figure: Spherical Balloon

Example Continued...

Suppose that the radius r and surface area $S=4 \pi r^{2}$ of a sphere are differentiable functions of time. Write an equation that relates

$$
\frac{d S}{d t} \text { to } \frac{d r}{d t}
$$

We used the chain rule which says that

$$
\frac{d S}{d t}=\frac{d S}{d r} \frac{d r}{d t}
$$

Since $\frac{d S}{d r}=4 \pi(2 r)$, we get

$$
\frac{d S}{d t}=4 \pi(2 r) \frac{d r}{d t}=8 \pi r \frac{d r}{d t}
$$

Given this result, find the rate at which the surface area is changing when the radius is 10 cm .

We are told that r is increasing at a rate of $2 \mathrm{~mm} / \mathrm{sec}$. The derivative is the rate of change! So this tells us that

$$
\frac{d r}{d t}=2 \mathrm{~mm} / \mathrm{sec}
$$

Since r is increasing (given), the derivative above is positive 2. If r were decreasing, it would be negative 2 . When $r=10 \mathrm{~cm}=100 \mathrm{~mm}$, we found

$$
\frac{d S}{d t}=8 \pi(100 \mathrm{~mm})(2 \mathrm{~mm} / \mathrm{sec})=1600 \pi \mathrm{~mm}^{2} / \mathrm{sec}
$$

The surface area is increasing at a rate of $1600 \pi \mathrm{~mm}^{2}$ per second. (Note that the units make sense. mm^{2} is a unit of area.)

Example
A right circular cone of height h and base radius r has volume

$$
V=\frac{\pi}{3} r^{2} h .
$$

(a) Find $\frac{d V}{d t}$ in terms of $\frac{d h}{d t}$ if r is constant.

Using the chain rule (a,k,a implicit differentiation)

$$
\begin{aligned}
\frac{d}{d t} V & =\frac{d}{d t}\left(\frac{\pi}{3} r^{2} h\right) \\
\frac{d V}{d t} & =\frac{\pi}{3} r^{2} \frac{d h}{d t}
\end{aligned}
$$

Since r, hence r^{2}, is constant

Example Continued...

$$
V=\frac{\pi}{3} r^{2} h
$$

Question (b) Find $\frac{d V}{d t}$ in terms of $\frac{d r}{d t}$ if h is constant.
(a) $\frac{d V}{d t}=\frac{2 \pi}{3} r \frac{d r}{d t}$

$$
\frac{d}{d t} V=\frac{d}{d t}\left(\frac{\pi}{3} r^{2} h\right)
$$

(b) $\frac{d V}{d t}=\frac{\pi}{3} r^{2} \frac{d r}{d t}$

$$
\frac{d v}{d t}=\frac{\pi}{3} h(2 r) \cdot \frac{d r}{d t}
$$

(c) $\frac{d V}{d t}=\frac{\pi}{3} r^{2} h \frac{d r}{d t}$

$$
=\frac{2 \pi}{3} r h \frac{d r}{d t}
$$

((d)) $\frac{d V}{d t}=\frac{2 \pi}{3} r h \frac{d r}{d t}$

And Continued Further...

$$
V=\frac{\pi}{3} r^{2} h
$$

(c) Find $\frac{d V}{d t}$ in terms of $\frac{d h}{d t}$ and $\frac{d r}{d t}$ assuming neither r nor h is constant.

$$
\begin{aligned}
& \frac{d}{d t} v=\frac{d}{d t}\left(\frac{\pi}{3} r^{2} h\right) \\
& \underbrace{}_{\text {product }} \\
& \frac{d v}{d t}=\frac{\pi}{3}\left(r^{2} \frac{d h}{d t}+h(2 r) \frac{d r}{d t}\right) \\
&=\frac{\pi}{3} r^{2} \frac{d h}{d t}+\frac{2 \pi}{3} r h \frac{d r}{d t}
\end{aligned}
$$

Example
Two cars leave from the same place. One heads due east at 30 mph , the other heads due north at a rate of 45 mph . At what rate is the distance between them changing after 15 minutes.

Let x be the distance of the east bound can and y the distance of the north bound car from the stating point in miles at the time t in hours.
Let z be the straight line distance between the cons (also in miles).

Given: $\frac{d x}{d t}=30 \mathrm{mph}$ and $\frac{d y}{d t}=45 \mathrm{mph}$

Question: What is $\frac{d z}{d t}$ when $t=\frac{1}{4} \mathrm{hr}$?

From the geometry

$$
z^{2}=x^{2}+y^{2}
$$

Tale the derivative

$$
\begin{aligned}
& \frac{d}{d t} z^{2}=\frac{d}{d t}\left(x^{2}+y^{2}\right) \\
& 2 z \frac{d z}{d t}=2 x \frac{d x}{d t}+2 y \frac{d y}{d t} \\
\Rightarrow & \frac{d z}{d t}=\frac{x \frac{d x}{d t}+y \frac{d y}{d t}}{z}
\end{aligned}
$$

When $t=\frac{1}{4} \mathrm{hr} \quad x=30 \frac{\mathrm{mi}}{\mathrm{hr}} \cdot \frac{1}{4} \mathrm{hr}=\frac{30}{4} \mathrm{mi}$ and $y=45 \frac{\mathrm{mi}}{\mathrm{hr}} \cdot \frac{1}{4} \mathrm{hr}=\frac{45}{4} \mathrm{mi}$
and

$$
\begin{aligned}
z^{2} & =\left(\frac{30}{4} m i\right)^{2}+\left(\frac{45}{4} m i\right)^{2}=\frac{30^{2}+45^{2}}{4^{2}} \mathrm{mi}^{2} \\
\Rightarrow \quad z & =\frac{\sqrt{30^{2}+45^{2}}}{4} \mathrm{ni}
\end{aligned}
$$

So when $t=\frac{1}{4} \mathrm{hr}$

$$
\begin{aligned}
\frac{d z}{d t} & =\frac{\left(\frac{30}{4} m i\right) 30 \frac{m i}{h}+\left(\frac{45}{4} m i\right) 45 \frac{m i}{n}}{\frac{\sqrt{30^{2}+45^{2}}}{4} m i} \\
& =\frac{\frac{30^{2}}{4} m i^{2} / n+\frac{4 s^{2}}{4} \frac{n i^{2}}{h}}{\sqrt{30^{2}+45^{2}}} 4 \mathrm{mi} \\
& =\left(\frac{30^{2}}{4}+\frac{45^{2}}{4}\right) \frac{m i^{2}}{4 r} \cdot \frac{4}{\sqrt{30^{2}+45^{2}}} \frac{1}{m i}
\end{aligned}
$$

$$
\frac{d z}{d t}=\sqrt{30^{2}+45^{2}} \quad \frac{m i}{h_{r}} \approx 54 \frac{\mathrm{mi}}{h_{r}}
$$

The distance between then is increasing at about 54 mph .

Note

$$
\frac{p}{\sqrt{p}}=\frac{(\sqrt{p})^{2}}{\sqrt{p}}=\frac{\sqrt{p} \sqrt{p}}{\sqrt{p}}=\sqrt{p}
$$

General Approach to Solving Related Rates Prob.

- Identifty known and unknown quantities and assign variables.
- Create a diagram if possible.
- Use the diagram, physical science, and mathematics to connect known quantities to those being sought.
- Relate the rates of change using implicit differentiation.
- Substitute in known quantities and solve for desired quantities.

Example
A reservoir in the shape of an inverted right circular cone has height 10 m and base radius 6 m . If water is flowing into the reservoir at a constant rate of $50 \mathrm{~m}^{3} / \mathrm{min}$. What is the rate at which the height of the water is increasing when the height is 5 m ?

Let r and h be the base radius and height of the water in meters at the time t in minutes. If the Volume of water is V then were given $\frac{d V}{d t}=50 \frac{\mathrm{~m}^{3}}{\mathrm{~min}}$.

Question: What is $\frac{d h}{d t}$ when $h=5 \mathrm{~m}$?

From geometry $V=\frac{\pi}{3} r^{2} h$.
we can write r interns of h using similar triangles. Take a cross section.

Using fixed ratios

$$
\begin{aligned}
& \frac{r}{h}=\frac{6}{10}=\frac{3}{5} \Rightarrow r=\frac{3}{5} h \\
& \text { so } V=\frac{\pi}{3}\left(\frac{3}{5} h\right)^{2} h=\frac{3 \pi}{25} h^{3}
\end{aligned}
$$

Take the denivotive

$$
\begin{aligned}
& \frac{d}{d t} V=\frac{d}{d t}\left(\frac{3 \pi}{25} h^{3}\right) \\
& \frac{d V}{d t}=\frac{3 \pi}{25} 3 h^{2} \cdot \frac{d h}{d t}
\end{aligned}
$$

wher $h=S_{m}$

$$
50 \frac{m^{3}}{\mathrm{~min}}=\frac{9 \pi}{25}(5 \mathrm{~m})^{2} \cdot \frac{d h}{d t}
$$

$$
\begin{aligned}
\frac{d h}{d t} & =50 \frac{\mathrm{~m}^{3}}{\mathrm{~min}} \frac{1}{9 \pi \mathrm{~m}^{2}}=\frac{50}{9 \pi} \frac{\mathrm{~m}}{\mathrm{~min}} \\
& \approx 1.8 \frac{\mathrm{~m}}{\mathrm{~m} \cdot \mathrm{n}}
\end{aligned}
$$

The height is increasing at about $1.8 \mathrm{~m} / \mathrm{min}$.

