October 12 Math 2306 sec 51 Fall 2015

Section 4.9: Solving a System by Elimination

Recall: A linear system of ODE's is a collection of two or more linear ODE's with two or more dependent variables.

A first order, constant coefficient system IVP has the form

$$\frac{dx}{dt} = a_{11}x + a_{12}y + f(t), \quad x(t_0) = x_0
\frac{dy}{dt} = a_{21}x + a_{22}y + g(t), \quad y(t_0) = y_0$$

If f(t) = g(t) = 0, the system is *homogeneous*. Otherwise it is nonhomogeneous.

A solution to the ODE part will be a pair (x(t), y(t)) containing 2-parameters (shared by the pair).

Operator Notation

Using the notation $D^n x = \frac{d^n x}{dt^n}$, the previous system may be expressed as

$$Dx = a_{11}x + a_{12}y + f(t), \quad x(t_0) = x_0$$

 $Dy = a_{21}x + a_{22}y + g(t), \quad y(t_0) = y_0$

or for even greater convenience

$$(D-a_{11})x - a_{12}y = f(t), x(t_0) = x_0$$

 $-a_{21}x + (D-a_{22})y = g(t), y(t_0) = y_0$

Solving a System by Elimination

Remark: The current method is for linear systems with constant coefficients only.

- ▶ Write the system using the operator notation. Line up like variables so that the system appears as an algebraic system.
- ► Eliminate variables using standard operations. Keep in mind that "multiplication" by *D* is differentiation.
- ▶ Obtain an equation (or equations) in each variable separately, and solve using any applicable method.
- Use back substitution as needed to obtain solutions for all dependent variables.

Solve the System by Elimination

$$\frac{dx}{dt} = 4x + 7y$$

$$\frac{dy}{dt} = x - 2y$$

$$Dx : 4x + 7y$$

$$Dy = x - 2y$$

$$Dx - 4x - 7y = 0$$

$$-x + 0y + 1z = 0$$

$$(D-4) \times -7y = 0$$
 "Multiply" equation
- $\times + (D+2) y = 0$ 2 by D-4

$$-7_{3} + (D-4)(D+2)_{3} = 0$$

$$-7_{3} + (D^{2}-4D+2D-8)_{3} = 0 \implies (D^{2}-2D-15)_{3} = 0$$

$$-7_{3} + (0^{2}-2D-8)_{3} = 0 \qquad y''-2y'-15y_{3} = 0$$

$$2^{n\delta}$$
 order, constant (sefficient, homogeneous egn.
 $m^2 - 2m - 15 = 0 \Rightarrow (m - 5)(m + 3) = 0$
 $m_1 = 5$
 $m_2 = -3$

we need to solve for x. From the original 2^{nd} equation

$$x = \frac{3}{3t} + 7 = 5 \cdot (e - 3 \cdot (e + 2 \cdot (e + c \cdot e)))$$

$$= 7 \cdot (e - c \cdot e)$$

Solve the IVP by Elimination

$$x' - y = 12t, x(0) = 4$$

 $y' + x = 2, y(0) = 3$

699

x+Dy = 2

Bx + x = 14

$$D_{x}^{x} - D_{y} = D(12t) = 12$$

$$x'' + x = 14$$

gut
$$X_{c}$$
: $X'' + X = 0$ $m^{2} + 1 = 0$ $\Rightarrow m = \frac{1}{2}i$
 $X_{c} = C_{1} Cost + C_{2} Sint$

get
$$x_p$$
: $x_p = A$ (Method of Undelemined coefficients)

 $x_p' = 0$
 $x_p'' = 0$

$$X(0) = C_1 (\omega 0 + C_2 (in 0 + 14 = 4))$$
 $C_1 + 14 = 4 \Rightarrow C_1 = -10$

The solution to the IVP is

October 9, 2015 14 / 48

Section 5.1.1: Free Undamped Spring/Mass Systems

We consider a flexible spring from which a mass is suspended. In the absence of any damping forces (e.g. friction, a dash pot, etc.), and free of any external driving forces, any initial displacement or velocity imparted will result in **free**, **undamped motion**—a.k.a. **simple harmonic motion**.

→ Harmonic Motion gif

Building an Equation: Hooke's Law

At equilibrium, displacement x(t) = 0.

Hooke's Law: $F_{\text{spring}} = k x$

Figure: In the absence of any displacement, the system is at equilibrium. Displacement x(t) is measured from equilibrium x(t) = 0.

Building an Equation: Hooke's Law

Newton's Second Law: F = ma Force = mass times acceleration

$$a = \frac{d^2x}{dt^2} \implies F = m\frac{d^2x}{dt^2}$$

Hooke's Law: F = kx Force exerted by the spring is proportional to displacement

The force imparted by the spring opposes the direction of motion.

$$m \frac{d^2 x}{dt^2} = -kx \implies x'' + \omega^2 x = 0$$
 where $\omega = \sqrt{\frac{k}{m}}$

Convention We'll Use: Down will be positive (x > 0), and up will be negative (x < 0).

Simple Harmonic Motion

$$x'' + \omega^2 x = 0$$
, $x(0) = x_0$, $x'(0) = x_1$

Here, x_0 and x_1 are the initial position (relative to equilibrium) and velocity, respectively. The solution is

$$x(t) = x_0 \cos(\omega t) + \frac{x_1}{\omega} \sin(\omega t)$$

called the equation of motion. Characteristics of the system include

- the period $T = \frac{2\pi}{\omega}$,
- the frequency $f = \frac{1}{T} = \frac{\omega}{2\pi}^{1}$
- the circular frequency ω , and
- ▶ the amplitude or maximum displacement $A = \sqrt{x_0^2 + (x_1/\omega)^2}$

¹ Various authors call f the natural frequency and others use this term for ω .

Amplitude and Phase Shift

We can formulate the solution in terms of a single sine (or cosine) function. Letting

$$x(t) = x_0 \cos(\omega t) + \frac{x_1}{\omega} \sin(\omega t) = A \sin(\omega t + \phi)$$

requires

$$A = \sqrt{x_0^2 + (x_1/\omega)^2},$$

and the **phase shift** ϕ must be defined by (for a sine representation)

$$\sin \phi = \frac{x_0}{A}$$
, with $\cos \phi = \frac{x_1}{\omega A}$.

Derive
$$x_0 \cos(\omega t) + x_1/\omega \sin(\omega t) = A \sin(\omega t + \phi)$$

$$X(t) : \sqrt{\chi_0^2 + \left(\frac{\chi_1}{\omega}\right)^2} \left(\frac{\chi_0}{\sqrt{\chi_0^2 + \left(\frac{\chi_1}{\omega}\right)^2}} C_{01}(\omega t) + \frac{\chi_1/\omega}{\sqrt{\chi_0^2 + \left(\frac{\chi_1}{\omega}\right)^2}} Sin(\omega t) \right)$$

Note
$$\left(\underbrace{\frac{x_0}{x_0^2+(\frac{x_1}{\omega})^2}}_{Sin}\right)^2 + \left(\underbrace{\frac{x_1/\omega}{x_0^2+(\frac{x_1/\omega}{\omega})^2}}_{Cos\phi}\right)^2 = \frac{x_0^2+(\frac{x_1/\omega}{\omega})^2}{x_0^2+(\frac{x_1/\omega}{\omega})^2} = 1$$

Example

A 4 pound weight stretches a spring 6 inches. The mass is released from a position 4 feet below equilibrium with an initial upward velocity of 24 ft/sec. Find the equation of motion, the period, amplitude, phase shift, and frequency of the motion. (Take g=32 ft/sec².)

$$X(0) = X_0 = Y ft$$
, $X'(0) = X_1 = -2Y ft$
 $F_1 \times k$: $F = k \times \Rightarrow Y = Y = k \times (0.5 ft)$
 $\Rightarrow k = 8 \frac{15}{ft}$
 $F_1 \times k \times k \times k \times k \times (0.5 ft)$
 $\Rightarrow k = 8 \frac{15}{ft}$
 $F_2 \times k \times k \times k \times (0.5 ft)$

$$\Rightarrow m = \frac{1}{8} \frac{1}{19 \text{ sec}_3} = \frac{8}{19} \text{ slugs}$$

$$\omega^2 = \frac{k}{M} = \frac{8}{8} \frac{10}{10} \frac{\Omega^2}{4} = \frac{64}{10} \frac{1}{10} \frac{1}{10} \frac{\Omega^2}{10} = \frac{64}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{\Omega^2}{10} = \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{\Omega^2}{10} = \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{\Omega^2}{10} = \frac{1}$$

4 D > 4 D > 4 E > 4 E > 9

$$A = \sqrt{4^2 + (-3)^2} = 5$$