October 12 Math 2306 sec 51 Fall 2015

Section 4.9: Solving a System by Elimination

Recall: A linear system of ODE's is a collection of two or more linear ODE's with two or more dependent variables.

A first order, constant coefficient system IVP has the form

$$
\begin{array}{ll}
\frac{d x}{d t}=a_{11} x+a_{12} y+f(t), & x\left(t_{0}\right)=x_{0} \\
\frac{d y}{d t}=a_{21} x+a_{22} y+g(t), & y\left(t_{0}\right)=y_{0}
\end{array}
$$

If $f(t)=g(t)=0$, the system is homogeneous. Otherwise it is nonhomogeneous.

A solution to the ODE part will be a pair $(x(t), y(t))$ containing 2-parameters (shared by the pair).

Operator Notation

Using the notation $D^{n} x=\frac{d^{n} x}{d t n}$, the previous system may be expressed as

$$
\begin{aligned}
& D x=a_{11} x+a_{12} y+f(t), \quad x\left(t_{0}\right)=x_{0} \\
& D y=a_{21} x+a_{22} y+g(t), \quad y\left(t_{0}\right)=y_{0}
\end{aligned}
$$

or for even greater convenience

$$
\begin{array}{rlrl}
\left(D-a_{11}\right) x- & a_{12} y & =f(t), & \\
x\left(t_{0}\right)=x_{0} \\
-a_{21} x+\left(D-a_{22}\right) y & =g(t), & & y\left(t_{0}\right)=y_{0}
\end{array}
$$

Solving a System by Elimination

Remark: The current method is for linear systems with constant coefficients only.

- Write the system using the operator notation. Line up like variables so that the system appears as an algebraic system.
- Eliminate variables using standard operations. Keep in mind that "multiplication" by D is differentiation.
- Obtain an equation (or equations) in each variable separately, and solve using any applicable method.
- Use back substitution as needed to obtain solutions for all dependent variables.

Solve the System by Elimination

$$
\begin{aligned}
& \frac{d x}{d t}=4 x+7 y \Rightarrow D_{x}=4 x+7 y \Rightarrow D_{x}-4 x-7 y=0 \\
& \frac{d y}{d t}=x-2 y \Rightarrow D_{y}=x-2 y \Rightarrow-x+D_{y}+2 y=0
\end{aligned}
$$

$$
(D-4) x-7 y=0
$$

"Multiply" equation

$$
-x+(D+2) y=0
$$

$$
x+(0) 2) \gamma-
$$

2 by $D-4$

$$
\begin{aligned}
& (D-4) x-7 y=0 \\
& -(D-4) x+(D-4)(D+2) y=(D-4) 0=0 \quad \text { add }
\end{aligned}
$$

$$
\begin{aligned}
& -7 y+(D-4)(D+2) y=0 \\
& -7 y+\left(D^{2}-4 D+2 D-8\right) y=0 \Rightarrow\left(D^{2}-2 D-15\right) y=0 \\
& -7 y+\left(D^{2}-2 D-8\right) y=0 \quad y^{\prime \prime}-2 y^{\prime}-15 y=0
\end{aligned}
$$

$2^{\text {nd }}$ order, constant coefficient, homogeneous ign.

$$
\begin{aligned}
& m^{2}-2 m-15=0 \Rightarrow(m-5)(m+3)=0 \\
& m_{1}=5 \\
& m_{2}=-3
\end{aligned}
$$

$$
y=c_{1} e^{s t}+c_{2} e^{-3 t}
$$

we need to solve for x. From the original $2^{\text {nd }}$ equation

$$
\begin{aligned}
x=\frac{d y}{d t}+2 y & =5 c_{1} e^{5 t}-3 c_{2} e^{-3 t}+2\left(c_{1} e^{5 t}+c_{2} e^{-3 t}\right) \\
& =7 c_{1} e^{5 t}-c_{2} e^{-3 t}
\end{aligned}
$$

The solution is

$$
\begin{aligned}
& x=7 c_{1} e^{s t}-c_{2} e^{-3 t} \\
& y=c_{1} e^{s t}+c_{2} e^{-3 t}
\end{aligned}
$$

Solve the IVP by Elimination
Solve the DE

$$
\begin{array}{lll}
x^{\prime}-y=12 t, & x(0)=4 \\
y^{\prime}+x=2, & y(0)=3 & D x-y=12 t \\
& & x+D y=2
\end{array}
$$

"Multiply" top en.
by D
add

$$
\begin{aligned}
& D^{2} x-D y=D(12 t)=12 \\
& x+D y=2 \\
& D^{2} x+x=14
\end{aligned}
$$

$$
x^{\prime \prime}+x=14
$$

get $x_{c}: \quad x^{\prime \prime}+x=0 \quad m^{2}+1=0 \Rightarrow m= \pm i$

$$
\alpha=0, \quad \beta=1
$$

$$
x_{c}=c_{1} \cos t+c_{2} \sin t
$$

get $x_{p}: \quad x_{p}=A$ (Method of Undetermined coefficients)

$$
\begin{aligned}
& x_{p}^{\prime}=0 \\
& x_{p}^{\prime \prime}=0
\end{aligned}
$$

$$
x_{p}^{\prime \prime}+x_{p}=14 \Rightarrow 0+A=14 \Rightarrow A=14
$$

So

$$
x(t)=c_{1} \cos t+c_{2} \sin t+14
$$

From the origind $1^{\text {st }}$ equation

$$
y=x^{\prime}-12 t=-c_{1} \sin t+c_{2} \cos t-12 t
$$

The geverd solution to the DE is

$$
\begin{aligned}
& x=c_{1} \cos t+c_{2} \sin t+14 \\
& y=c_{2} \cos t-c_{1} \sin t-12 t
\end{aligned}
$$

Apply $x(0)=4, \quad y(0)=3$

$$
\begin{aligned}
x(0)=c_{1} \cos 0+c_{2} \sin 0+14 & =4 \\
c_{1}+14 & =4 \Rightarrow \quad c_{1}=-10
\end{aligned}
$$

$$
\begin{aligned}
y(0)=c_{2} \cos 0-c_{1} \sin 0-12 \cdot 0 & =3 \\
c_{2} & =3
\end{aligned}
$$

The solution to the $I V P$ is

$$
\begin{aligned}
& x=-10 \cos t+3 \sin t+14 \\
& y=3 \cos t+10 \sin t-12 t
\end{aligned}
$$

Section 5.1.1: Free Undamped Spring/Mass Systems

We consider a flexible spring from which a mass is suspended. In the absence of any damping forces (e.g. friction, a dash pot, etc.), and free of any external driving forces, any initial displacement or velocity imparted will result in free, undamped motion-a.k.a. simple harmonic motion.

Building an Equation: Hooke's Law

At equilibrium, displacement $x(t)=0$.
Hooke's Law: $\mathrm{F}_{\text {spring }}=k \mathrm{x}$
Figure: In the absence of any displacement, the system is at equilibrium. Displacement $x(t)$ is measured from equilibrium $x(t)=0$.

Building an Equation: Hooke's Law

Newton's Second Law: $F=$ ma Force $=$ mass times acceleration

$$
a=\frac{d^{2} x}{d t^{2}} \quad \Longrightarrow \quad F=m \frac{d^{2} x}{d t^{2}}
$$

Hooke's Law: $F=k x$ Force exerted by the spring is proportional to displacement
The force imparted by the spring opposes the direction of motion.

$$
m \frac{d^{2} x}{d t^{2}}=-k x \quad \Longrightarrow \quad x^{\prime \prime}+\omega^{2} x=0 \quad \text { where } \quad \omega=\sqrt{\frac{k}{m}}
$$

Convention We'll Use: Down will be positive $(x>0)$, and up will be negative $(x<0)$.

Simple Harmonic Motion

$$
x^{\prime \prime}+\omega^{2} x=0, \quad x(0)=x_{0}, \quad x^{\prime}(0)=x_{1}
$$

Here, x_{0} and x_{1} are the initial position (relative to equilibrium) and velocity, respectively. The solution is

$$
x(t)=x_{0} \cos (\omega t)+\frac{x_{1}}{\omega} \sin (\omega t)
$$

called the equation of motion. Characteristics of the system include

- the period $T=\frac{2 \pi}{\omega}$,
- the frequency $f=\frac{1}{T}_{T} \frac{\omega}{2 \pi}^{1}$
- the circular frequency ω, and
- the amplitude or maximum displacement $A=\sqrt{x_{0}^{2}+\left(x_{1} / \omega\right)^{2}}$
${ }^{1}$ Various authors call f the natural frequency and others use this term for ω.

Amplitude and Phase Shift

We can formulate the solution in terms of a single sine (or cosine) function. Letting

$$
x(t)=x_{0} \cos (\omega t)+\frac{x_{1}}{\omega} \sin (\omega t)=A \sin (\omega t+\phi)
$$

requires

$$
A=\sqrt{x_{0}^{2}+\left(x_{1} / \omega\right)^{2}}
$$

and the phase shift ϕ must be defined by (for a sine representation)

$$
\sin \phi=\frac{x_{0}}{A}, \quad \text { with } \quad \cos \phi=\frac{x_{1}}{\omega A} .
$$

Derive $x_{0} \cos (\omega t)+x_{1} / \omega \sin (\omega t)=A \sin (\omega t+\phi)$
whet $A=\sqrt{x_{0}{ }^{2}+\left(x_{1} / \omega\right)^{2}}$

$$
\begin{aligned}
& x(t)=\sqrt{x_{0}^{2}+\left(\frac{x_{1}}{\omega}\right)^{2}}\left(\frac{x_{0}}{\sqrt{x_{0}^{2}+\left(\frac{x_{\omega}}{\omega}\right)^{2}}} \cos (\omega t)+\frac{x_{1} / \omega}{\sqrt{x_{0}^{2}+\left(x_{1} / \omega\right)^{2}}} \sin (\omega t)\right) \\
& \underbrace{\sin ^{\prime \prime} \phi}(\underbrace{\left.\frac{x_{0}}{\sqrt{x_{0}^{2}+\left(\frac{x_{1}}{\omega}\right)^{2}}}\right)^{2}}_{\cos \phi}+\left(\frac{x_{1} / \omega}{\sqrt{x_{0}^{2}+\left(x_{1} / \omega\right)^{2}}}\right)^{2}=\frac{x_{0}^{2}+\left(x_{1} / \omega\right)^{2}}{x_{0}^{2}+\left(x_{1} / \omega\right)^{2}}=1 \\
& x=A(\sin \phi \cos (\omega t)+\cos \phi \sin \omega t)=A \sin (\omega t+\phi)
\end{aligned}
$$

Example
A 4 pound weight stretches a spring 6 inches. The mass is released from a position 4 feet below equilibrium with an initial upward velocity of $24 \mathrm{ft} / \mathrm{sec}$. Find the equation of motion, the period, amplitude, phase shift, and frequency of the motion. (Take $g=32 \mathrm{ft} / \mathrm{sec}^{2}$.)

$$
\begin{aligned}
& x(0)=x_{0}=4 \mathrm{ft}, x^{\prime}(0)=x_{1}=-24 \frac{\mathrm{ft}}{\mathrm{sec}} \\
& \text { Find } k: \quad F=k x \Rightarrow 41 \mathrm{~b}=k(0.5 \mathrm{ft}) \\
& \\
& \Rightarrow k=8 \frac{\mathrm{lb}}{\mathrm{ft}}
\end{aligned}
$$

Find $m: W=m g \Rightarrow 4^{\mathrm{b}}=m\left(32 \frac{t t}{\sec ^{2}}\right)$

$$
\begin{aligned}
& \Rightarrow m=\frac{1}{8} \frac{b^{s e c e^{2}}}{f t}=\frac{1}{8} \text { slugs } \\
& \omega^{2}=\frac{h}{m}=\frac{8 \frac{1 b}{f t}}{\frac{1}{8} \frac{16 c^{2}}{f t}}=64 \mathrm{~h} / \sec ^{2} \\
& \Rightarrow \omega=8 \quad 1 \mathrm{sec} .
\end{aligned}
$$

$$
\begin{aligned}
& x(t)=4 \cos (8 t)-\frac{24}{8} \sin (8 t) \\
& x(t)=4 \cos (8 t)-3 \sin (8 t)
\end{aligned}
$$

Amplitude

$$
A=\sqrt{4^{2}+(-3)^{2}}=5
$$

Period $T=\frac{2 \pi}{8}=\frac{\pi}{4}$
frequency $f=\frac{4}{\pi}$
Phase shift $\quad \sin \phi=\frac{4}{5}, \cos \phi=\frac{-3}{5}$
Quad II angle

$$
\phi=\cos ^{-1}\left(\frac{-3}{5}\right) \approx 2.21 \text { (radians) }
$$

