
October 12 Math 2306 sec 54 Fall 2015

Section 4.9: Solving a System by Elimination

Recall: A linear system of ODE’s is a collection of two or more linear
ODE’s with two or more dependent variables.

A first order, constant coefficient system IVP has the form

dx
dt

= a11x + a12y + f (t), x(t0) = x0

dy
dt

= a21x + a22y + g(t), y(t0) = y0

If f (t) = g(t) = 0, the system is homogeneous. Otherwise it is
nonhomogeneous.

A solution to the ODE part will be a pair (x(t), y(t)) containing
2-parameters (shared by the pair).
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Operator Notation

Using the notation Dnx = dnx
dtn , the previous system may be expressed

as

Dx = a11x + a12y + f (t), x(t0) = x0

Dy = a21x + a22y + g(t), y(t0) = y0

or for even greater convenience

(D − a11)x − a12y = f (t), x(t0) = x0
−a21x + (D − a22)y = g(t), y(t0) = y0
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Solving a System by Elimination

Remark: The current method is for linear systems with constant
coefficients only.

I Write the system using the operator notation. Line up like
variables so that the system appears as an algebraic system.

I Eliminate variables using standard operations. Keep in mind that
”multiplication” by D is differentiation.

I Obtain an equation (or equations) in each variable separately, and
solve using any applicable method.

I Use back substitution as needed to obtain solutions for all
dependent variables.
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Solve the System by Elimination

dx
dt

= 4x + 7y

dy
dt

= x − 2y

We rewrote this as

(D − 4)x − 7y = 0
−x + (D + 2)y = 0,

eliminated x , and obtained the equation

y ′′ − 2y ′ − 15y = 0, with solution y = c1e5t + c2e−3t .

We still need to find x(t).
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Solve the IVP by Elimination

x ′ − y = 12t , x(0) = 4
y ′ + x = 2, y(0) = 3
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Section 5.1.1: Free Undamped Spring/Mass Systems

We consider a flexible spring from which a mass is suspended. In the
absence of any damping forces (e.g. friction, a dash pot, etc.), and free
of any external driving forces, any initial displacement or velocity
imparted will result in free, undamped motion–a.k.a. simple
harmonic motion.

Harmonic Motion gif
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Building an Equation: Hooke’s Law

Figure: In the absence of any displacement, the system is at equilibrium.
Displacement x(t) is measured from equilibrium x(t) = 0.
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Building an Equation: Hooke’s Law

Newton’s Second Law: F = ma Force = mass times acceleration

a =
d2x
dt2 =⇒ F = m

d2x
dt2

Hooke’s Law: F = kx Force exerted by the spring is proportional to
displacement
The force imparted by the spring opposes the direction of motion.

m
d2x
dt2 = −kx =⇒ x ′′ + ω2x = 0 where ω =

√
k
m

Convention We’ll Use: Down will be positive (x > 0), and up will be
negative (x < 0).
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Simple Harmonic Motion

x ′′ + ω2x = 0, x(0) = x0, x ′(0) = x1

Here, x0 and x1 are the initial position (relative to equilibrium) and
velocity, respectively. The solution is

x(t) = x0 cos(ωt) +
x1

ω
sin(ωt)

called the equation of motion. Characteristics of the system include

I the period T = 2π
ω ,

I the frequency f = 1
T = ω

2π
1

I the circular frequency ω, and

I the amplitude or maximum displacement A =
√

x2
0 + (x1/ω)2

1Various authors call f the natural frequency and others use this term for ω.
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Amplitude and Phase Shift

We can formulate the solution in terms of a single sine (or cosine)
function. Letting

x(t) = x0 cos(ωt) +
x1

ω
sin(ωt) = A sin(ωt + φ)

requires

A =
√

x2
0 + (x1/ω)2,

and the phase shift φ must be defined by (for a sine representation)

sinφ =
x0

A
, with cosφ =

x1

ωA
.
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Derive x0 cos(ωt) + x1/ωsin(ωt) = A sin(ωt + φ)
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Example

A 4 pound weight stretches a spring 6 inches. The mass is released
from a position 4 feet below equilibrium with an initial upward velocity
of 24 ft/sec. Find the equation of motion, the period, amplitude, phase
shift, and frequency of the motion. (Take g = 32 ft/sec2.)
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