October 12 Math 2306 sec 54 Fall 2015

Section 4.9: Solving a System by Elimination

Recall: A linear system of ODE’s is a collection of two or more linear
ODE'’s with two or more dependent variables.

A first order, constant coefficient system IVP has the form

ax —
o = anxtaey+1(1), x(b)=x
dy —
i a X+ azy+9(t), y(b)=x

If f(t) = g(t) = 0, the system is homogeneous. Otherwise it is
nonhomogeneous.

A solution to the ODE part will be a pair (x(f), y(t)) containing
2-parameters (shared by the pair).
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Operator Notation

Using the notation D"x = dtn , the previous system may be expressed

as

Dx = ayx+apy+1f(t), x(b)=x
Dy = a21X+322y+g(t)7 y(to) =)o

or for even greater convenience

(D—a)x — aizy = f(t), x(k)=xo
—anx + (D-axn)y = g(1), y(b) = Yo
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Solving a System by Elimination

Remark: The current method is for linear systems with constant
coefficients only.

» Write the system using the operator notation. Line up like
variables so that the system appears as an algebraic system.

» Eliminate variables using standard operations. Keep in mind that
"multiplication” by D is differentiation.

» Obtain an equation (or equations) in each variable separately, and
solve using any applicable method.

» Use back substitution as needed to obtain solutions for all
dependent variables.
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Solve the System by Elimination

ax

v 4x +7y
ay

o T XY

We rewrote this as

(D-4)x — 7y =
-x + (D+2)y = 0,

o

eliminated x, and obtained the equation

y" —2y' —15y =0, with solution y = cie®' + cre .

We still need to find x(t).
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Solve the IVP by Elimination

X —y = 12t,
y+x = 2

x(0) =4
y(0) =3

‘ L
TMakply 1 an

b}"D

add

Sa\v( Ve DEs -f-\rs\'

Dx-*3=\2t

X+1>«3 = 2

D - Dy = Dlak): 12

2

X+ Py

N\

Ox +X = I
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Section 5.1.1: Free Undamped Spring/Mass Systems

We consider a flexible spring from which a mass is suspended. In the
absence of any damping forces (e.g. friction, a dash pot, etc.), and free
of any external driving forces, any initial displacement or velocity
imparted will result in free, undamped motion—a.k.a. simple
harmonic motion.
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Building an Equation: Hooke'’s Law
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At equilibrium, displacement x(t) = 0.

Hooke’sLaw: F =kx

spring

Figure: In the absence of any displacement, the system is at equilibrium.
Displacement x(t) is measured from equilibrium x(t) = 0.
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Building an Equation: Hooke’s Law

Newton’s Second Law: F = ma Force = mass times acceleration

_Px g X
Cdr? R

Hooke’s Law: F = kx Force exerted by the spring is proportional to
displacement

The force imparted by the spring opposes the direction of motion.

d?x k
m— = —kx =— x"+uw?x=0 where w=1/—
at? m

Convention We’ll Use: Down will be positive (x > 0), and up will be
negative (x < 0).
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Simple Harmonic Motion

X" +uw?x =0, x(0)=x, x'(0)=x
Here, xo and x; are the initial position (relative to equilibrium) and
velocity, respectively. The solution is

X(t) = xo cos(wt) + % sin(wt)

called the equation of motion. Characteristics of the system include
> the period T = 27,
> the frequency f = } = &1
» the circular frequency w, and

> the amplitude or maximum displacement A = /X2 + (X1 /w)?

"Various authors call f the natural frequency and others:use this term for w.
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Amplitude and Phase Shift

We can formulate the solution in terms of a single sine (or cosine)
function. Letting

X(t) = X0 cos(wt) + - sin(wt) = Asin(wt + )

requires
A=/x¢+ (x1/w)?,
and the phase shift ¢ must be defined by (for a sine representation)

sinqﬁ:%, with cos<z>:x—24.
w
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Derive xg cos(wt) + X1 /wsin(wt) = Asin(wt + ¢)
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Example
A 4 pound weight stretches a spring 6 inches. The mass is released
from a position 4 feet below equilibrium with an initial upward velocity

of 24 ft/sec. Find the equation of motion, the period, amplitude, phase
shift, and frequency of the motion. (Take g = 32 ft/sec?.)

X(O\:X\, =Y £+ X'(o}'- X = -2\ %
| =N P Uz l(o.86Y) =2 - 8 &

Fnd mt et WEMg H1b= m (31 2
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