October 12 Math 2306 sec 54 Fall 2015

Section 4.9: Solving a System by Elimination

Recall: A linear system of ODE's is a collection of two or more linear ODE's with two or more dependent variables.

A first order, constant coefficient system IVP has the form

$$\frac{dx}{dt} = a_{11}x + a_{12}y + f(t), \quad x(t_0) = x_0
\frac{dy}{dt} = a_{21}x + a_{22}y + g(t), \quad y(t_0) = y_0$$

If f(t) = g(t) = 0, the system is *homogeneous*. Otherwise it is nonhomogeneous.

A solution to the ODE part will be a pair (x(t), y(t)) containing 2-parameters (shared by the pair).

Operator Notation

Using the notation $D^n x = \frac{d^n x}{dt^n}$, the previous system may be expressed as

$$Dx = a_{11}x + a_{12}y + f(t), \quad x(t_0) = x_0$$

 $Dy = a_{21}x + a_{22}y + g(t), \quad y(t_0) = y_0$

or for even greater convenience

$$(D-a_{11})x - a_{12}y = f(t), x(t_0) = x_0$$

 $-a_{21}x + (D-a_{22})y = g(t), y(t_0) = y_0$

Solving a System by Elimination

Remark: The current method is for linear systems with constant coefficients only.

- ▶ Write the system using the operator notation. Line up like variables so that the system appears as an algebraic system.
- ► Eliminate variables using standard operations. Keep in mind that "multiplication" by *D* is differentiation.
- ▶ Obtain an equation (or equations) in each variable separately, and solve using any applicable method.
- Use back substitution as needed to obtain solutions for all dependent variables.

Solve the System by Elimination

$$\frac{dx}{dt} = 4x + 7y$$

$$\frac{dy}{dt} = x - 2y$$

We rewrote this as

$$(D-4)x - 7y = 0$$

 $-x + (D+2)y = 0,$

eliminated x, and obtained the equation

$$y'' - 2y' - 15y = 0$$
, with solution $y = c_1 e^{5t} + c_2 e^{-3t}$.

We still need to find x(t).

From the original 2nd equation

$$x = \frac{dy}{dt} + 2y$$

= $5c_1 e^{-3} + 2(c_1 e^{-3t})$
= $7c_1 e^{-3t} - 3t$
= $7c_1 e^{-3t} - 2c_2 e^{-3t}$

The General Solution to the System is $x = 7C, e^{5t} - C_2 e^{-3t}$ $y = C, e^{5t} + C_2 e^{-3t}$

990

Solve the IVP by Elimination

$$x' - y = 12t, x(0) = 4$$

 $y' + x = 2, y(0) = 3$

$$Dx - y = 12t$$

 $x + Dy = 2$

$$X + D^2 = S$$

 $D_5 \times - D^2 = D(15f) = 15$

 $\mathcal{D}^2 \times + \times = 14$

Find
$$X_c$$
: $X'' + X = 0$

$$m^2 + 1 = 0 \implies m = \pm i \qquad d = 0, \beta = 1$$

$$X_c = C, Cost + C_2 Sint$$

Find Xp: Use Method of Undetermined coefficients

Xp = A

So
$$X(t) = C_1 Cort + C_2 Sint + 14$$

From the original 1^{SL} equation
$$y = X' - 12t$$

$$= -C_1 Sint + C_2 Cort - 12t$$

The Solution to the NP is

Section 5.1.1: Free Undamped Spring/Mass Systems

We consider a flexible spring from which a mass is suspended. In the absence of any damping forces (e.g. friction, a dash pot, etc.), and free of any external driving forces, any initial displacement or velocity imparted will result in **free**, **undamped motion**—a.k.a. **simple harmonic motion**.

→ Harmonic Motion gif

Building an Equation: Hooke's Law

At equilibrium, displacement x(t) = 0.

Hooke's Law: $F_{\text{spring}} = k x$

Figure: In the absence of any displacement, the system is at equilibrium. Displacement x(t) is measured from equilibrium x(t) = 0.

Building an Equation: Hooke's Law

Newton's Second Law: F = ma Force = mass times acceleration

$$a = \frac{d^2x}{dt^2} \implies F = m\frac{d^2x}{dt^2}$$

Hooke's Law: F = kx Force exerted by the spring is proportional to displacement

The force imparted by the spring opposes the direction of motion.

$$m \frac{d^2 x}{dt^2} = -kx \implies x'' + \omega^2 x = 0$$
 where $\omega = \sqrt{\frac{k}{m}}$

Convention We'll Use: Down will be positive (x > 0), and up will be negative (x < 0).

Simple Harmonic Motion

$$x'' + \omega^2 x = 0$$
, $x(0) = x_0$, $x'(0) = x_1$

Here, x_0 and x_1 are the initial position (relative to equilibrium) and velocity, respectively. The solution is

$$x(t) = x_0 \cos(\omega t) + \frac{x_1}{\omega} \sin(\omega t)$$

called the equation of motion. Characteristics of the system include

- the period $T = \frac{2\pi}{\omega}$,
- the frequency $f = \frac{1}{T} = \frac{\omega}{2\pi}^{1}$
- the circular frequency ω , and
- ▶ the amplitude or maximum displacement $A = \sqrt{x_0^2 + (x_1/\omega)^2}$

¹Various authors call f the natural frequency and others use this term for ω .

Amplitude and Phase Shift

We can formulate the solution in terms of a single sine (or cosine) function. Letting

$$x(t) = x_0 \cos(\omega t) + \frac{x_1}{\omega} \sin(\omega t) = A \sin(\omega t + \phi)$$

requires

$$A = \sqrt{x_0^2 + (x_1/\omega)^2},$$

and the **phase shift** ϕ must be defined by (for a sine representation)

$$\sin \phi = \frac{x_0}{A}$$
, with $\cos \phi = \frac{x_1}{\omega A}$.

Derive $x_0 \cos(\omega t) + x_1/\omega \sin(\omega t) = A \sin(\omega t + \phi)$

$$A = \int x_0^2 + \left(\frac{x_1}{\omega}\right)^2 \qquad \text{Noke:} \left(\frac{x_0}{\int x_0^2 + \left(\frac{x_1}{\omega}\right)^2}\right)^2 + \left(\frac{x_1/\omega}{\int x_0^2 + \left(\frac{x_1}{\omega}\right)^2}\right)^2 = \frac{x_0^2 + \left(\frac{x_1}{\omega}\right)^2}{x_0^2 + \left(\frac{x_1}{\omega}\right)^2}$$
Let $\sin \varphi = \frac{x_0}{A}$, $\cos \varphi = \frac{x_1/\omega}{A}$ = 1

$$X = A \left(\frac{x_0}{A} Gos(\omega t) + \frac{x_1/\omega}{A} Sin(\omega t) \right)$$

$$= A \left(Sin \phi Gos(\omega t) + Cos \phi Sin(\omega t) \right)$$

$$= A \left(Sin \phi Gos(\omega t) + Cos \phi Sin(\omega t) \right)$$

$$= A \left(Sin (\omega t + \phi) + Cos \phi Sin(\omega t) \right)$$

$$= A \left(Sin(\omega t + \phi) + Cos \phi Sin(\omega t) \right)$$

$$= A \left(Sin(\omega t + \phi) + Cos \phi Sin(\omega t) \right)$$

$$= A \left(Sin(\omega t + \phi) + Cos \phi Sin(\omega t) \right)$$

$$= A \left(Sin(\omega t + \phi) + Cos \phi Sin(\omega t) \right)$$

Example

A 4 pound weight stretches a spring 6 inches. The mass is released from a position 4 feet below equilibrium with an initial upward velocity of 24 ft/sec. Find the equation of motion, the period, amplitude, phase shift, and frequency of the motion. (Take g=32 ft/sec².)

$$X(0)=X_0=4$$
 ft $X'(0)=X_1=-24$ $\frac{ft}{sec}$
Find $M:$ Weight $W=Mg$ $41b=M(32)$ $\frac{ft}{ft}$
Find $M:$ Weight $W=Mg$ $41b=M(32)$ $\frac{ft}{ft}$
 $M=\frac{1}{8}$ $\frac{16}{CL}$ $\frac{sec^2}{CL}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$

$$\omega^2 = \frac{k}{M} = \frac{8 \frac{1b}{ft}}{\frac{1}{ft}} = 64 \frac{1}{5ec^2}$$

$$X = X_0 \cos(\omega t) + \frac{X_1}{\omega} \sin(\omega t)$$

Phase Snift:
$$\sin \phi = \frac{x_0}{A} = \frac{u}{5}$$
, $\cos \phi = \frac{\frac{x_1}{\omega}}{A} = \frac{-3}{5}$

$$\phi = \cos^{-1}\left(\frac{-3}{5}\right) \approx 2.21 \approx 126.9^{\circ}$$

October 9, 2015 29 / 48