October 12 Math 2306 sec. 57 Fall 2017
Solve the IVP

$$
y^{\prime \prime}-2 y^{\prime}+y=15 \sqrt{x} e^{x}+2, \quad y(0)=1, \quad y^{\prime}(0)=2
$$

Find $y c: y^{\prime \prime}-2 y^{\prime}+y=0$
Cherac. ean $\quad m^{2}-2 m+1=0 \Rightarrow(m-1)^{2}=0$ $m=1$ repeased $y_{1}=e^{x}$ and $y_{2}=x e^{x}$

Find yp: well considen 2 subproblems
(1) $y^{\prime \prime}-2 y^{\prime}+y=2$
(2) $y^{\prime \prime}-2 y^{\prime}+y=15 \sqrt{x} e^{x}$

$$
y_{c}=c_{1} e^{x}+c_{2} x e^{x}
$$

Find $y_{p,}$: $y^{\prime \prime}-2 y^{\prime}+y=2$ well un the method of undetanised coefficients.

$$
\begin{aligned}
& y_{p_{1}}=A \quad \text { this will work. } \\
& y_{p_{1}}^{\prime}=0, \quad y_{p_{1}}^{\prime \prime}=0 \\
& 0-2 \cdot 0+A=2 \Rightarrow A=2 \\
& \text { so } y_{p_{1}}=2
\end{aligned}
$$

To find b ez, well use Variation of Ponaretor. $y^{\prime \prime}-2 y^{\prime}+y=15 \sqrt{x} e^{x} \quad$ in standard for

$$
\begin{gathered}
g(x)=15 \sqrt{x} e^{x}, \quad y_{1}=e^{x}, y_{2}=x e^{x} \\
w=\left|\begin{array}{cc}
e^{x} x e^{x} \\
e^{x} x e^{x}+e^{x}
\end{array}\right|=x e^{2 x}+e^{2 x}-x e^{2 x}=e^{2 x} \\
J_{p_{2}}=u_{1} y_{1}+u_{2} y_{2} \text { when } \\
u_{1}=\int-\frac{s y_{2}}{w} d x, u_{2}=\int \frac{g y}{w} d x \\
u_{1}=\int \frac{-15 \sqrt{x} e^{x} \cdot x e^{x}}{e^{2 x}} d x=-15 \int \frac{x^{3 / 2} e^{2 x}}{e^{2 x}} d x
\end{gathered}
$$

$$
\begin{aligned}
& =-15 \int x^{3 / 2} d x=-15\left(\frac{x^{5 / 2}}{5 / 2}\right)=-6 x^{5 / 2} \\
u_{2} & =\int \frac{15 \sqrt{x} e^{x} \cdot e^{x}}{e^{2 x}} d x=15 \int \frac{x^{1 / 2} e^{2 x}}{e^{2 x}} d x \\
& =15 \int x^{1 / 2} d x=15\left(\frac{x^{3 / 2}}{3 / 2}\right)=10 x^{3 / 2} \\
\text { so } y_{p_{2}} & =4, y+4 y^{3} y_{2}=-6 x^{5 / 2} e^{x}+10 x^{3 / 2} x e^{x} \\
& =-6 x^{5 / 2} e^{x}+10 x^{5 / 2} e^{x} \\
& =4 x^{5 / 2} e^{x}
\end{aligned}
$$

$$
y_{p_{1}}=2 \text { and } y_{p_{2}}=4 x^{5 / 2} e^{x}
$$

By superposition $y_{p}=2+4 x^{5 / 2} e^{x}$
The serenade solution to the ODE is $y_{c}+y_{p}$

$$
y=c_{1} e^{x}+c_{2} x e^{x}+2+4 x^{5 / 2} e^{x}
$$

Impose $y(0)=1, y^{\prime}(0)=2$

$$
\begin{gathered}
y(0)=1, y(0)=2 \\
y^{\prime}=c_{1} e^{x}+c_{2} x e^{x}+c_{2} e^{x}+4 x^{5 / 2} e^{x}+10 x^{3 / 2} e^{x} \\
y(0)=c_{1} e^{0}+c_{2} \cdot 0 \cdot e^{0}+2+4 \cdot 0^{5 / 2} e^{0}=1 \\
c_{1}+2=1 \Rightarrow c_{1}=-1
\end{gathered}
$$

$$
\begin{gathered}
y^{\prime}(0)=c_{1} e^{0}+c_{2} \cdot 0 e^{0}+c_{2} e^{0}+4 \cdot 0^{5 / 2} e^{0}+10 \cdot 0^{3 / 2} e^{0}=2 \\
c_{1}+c_{2}=2 \\
c_{2}=2-c_{1}=2-(-1)=3
\end{gathered}
$$

The solution to the IV P is

$$
y=-e^{x}+3 x e^{x}+2+4 x^{5 / 2} e^{x}
$$

Section 11: Linear Mechanical Equations

Simple Harmonic Motion

We consider a flexible spring from which a mass is suspended. In the absence of any damping forces (e.g. friction, a dash pot, etc.), and free of any external driving forces, any initial displacement or velocity imparted will result in free, undamped motion-a.k.a. simple harmonic motion.

Building an Equation: Hooke's Law

At equilibrium, displacement $x(t)=0$.
Hooke's Law: $\mathrm{F}_{\text {spring }}=k \mathrm{x}$
Figure: In the absence of any displacement, the system is at equilibrium. Displacement $x(t)$ is measured from equilibrium $x=0$.

Building an Equation: Hooke's Law

Newton's Second Law: $F=$ ma Force $=$ mass times acceleration

$$
a=\frac{d^{2} x}{d t^{2}} \quad \Longrightarrow \quad F=m \frac{d^{2} x}{d t^{2}}
$$

Hooke's Law: $F=k x$ Force exerted by the spring is proportional to displacement
The force imparted by the spring opposes the direction of motion.

$$
\begin{aligned}
& m x^{\prime \prime}+k x=0 \Rightarrow x^{\prime \prime}+\frac{h}{m} x=0 \\
& m \frac{d^{2} x}{d t^{2}}=-k x \quad \Longrightarrow \quad x^{\prime \prime}+\omega^{2} x=0 \quad \text { where } \quad \omega=\sqrt{\frac{k}{m}}
\end{aligned}
$$

Convention We'll Use: Up will be positive ($x>0$), and down will be negative $(x<0)$. This orientation is arbitrary and follows the convention in Trench.

Obtaining the Spring Constant (US Customary Units)

If an object with weight W pounds stretches a spring δx feet ${ }^{1}$ from it's length with no mass attached, then by Hooke's law we compute the spring constant via the equation

$$
W=k \delta x .
$$

The units for k in this system of measure are $\mathrm{lb} / \mathrm{ft}$.

$$
k=\frac{w}{\delta x} \frac{1 b}{f t}
$$

${ }^{1}$ Note that $\delta x=\mathrm{w} /$ mass equilibrium - w/o mass equilibrium.

Obtaining the Spring Constant (US Customary Units)
Note also that Weight $=$ mass \times acceleration due to gravity. Hence if we know the weight of an object, we can obtain the mass via

$$
W=m g .
$$

We typically take the approximation $g=32 \mathrm{ft} / \mathrm{sec}^{2}$. The units for mass are $\mathrm{lb} \mathrm{sec}^{2} / \mathrm{ft}$ which are called slugs.

$$
m=\frac{w}{g} \frac{\mathrm{lb}}{\mathrm{ft} / \mathrm{sec}^{2}}=\frac{w}{g} \frac{16 \mathrm{sec}^{2}}{f t} \text { the unit } \operatorname{sing}
$$

Obtaining the Spring Constant (SI Units)

In SI units, the weight would be expressed in Newtons (N). The appropriate units for displacement would be meters (m). In these units, the spring constant would have units of N / m.

It is customary to describe an object by its mass in kilograms. When we encounter such a description, we deduce the weight in Newtons

$$
W=m g \text { taking the approximation } g=9.8 \mathrm{~m} / \mathrm{sec}^{2} .
$$

Obtaining the Spring Constant: Displacment in Equilibrium

Figure: (i) Spring only equilibrium. (ii) Spring-mass system equilibrium. The difference δx will be called displacement in equilibrium. Our variable $x(t)$ will be displacement of the Spring-Mass system.

Obtaining the Spring Constant: Displacment in Equilibrium

If an object stretches a spring δx units from it's length (with no object attached), we may say that it stretches the spring δx units in equilibrium. Applying Hooke's law with the weight as force, we have

$$
m g=k \delta x . \quad g=\frac{k \delta x}{m} \Rightarrow \frac{g}{\delta x}=\frac{k}{m}
$$

We observe that the value ω can be deduced from δx by

$$
\omega^{2}=\frac{k}{m}=\frac{g}{\delta x}
$$

Provided that values for δx and g are used in appropriate units, ω is in units of per second.

Simple Harmonic Motion

$$
\begin{equation*}
x^{\prime \prime}+\omega^{2} x=0, \quad x(0)=x_{0}, \quad x^{\prime}(0)=x_{1} \tag{1}
\end{equation*}
$$

Here, x_{0} and x_{1} are the initial position (relative to equilibrium) and velocity, respectively. The solution is

$$
x(t)=x_{0} \cos (\omega t)+\frac{x_{1}}{\omega} \sin (\omega t)
$$

called the equation of motion.

Caution: The phrase equation of motion is used differently by different authors. Some, including Trench, use this phrase to refer the ODE of which (1) would be the example here. Others use it to refer to the solution to the associated IVP.
$x(t)=x_{0} \cos (\omega t)+\frac{x_{1}}{\omega} \sin (\omega t)$

Characteristics of the system include

- the period $T=\frac{2 \pi}{\omega}$,
- the frequency $f=\frac{1}{T}=\frac{\omega^{2}}{2 \pi}$
- the circular (or angular) frequency ω, and
- the amplitude or maximum displacement $A=\sqrt{x_{0}^{2}+\left(x_{1} / \omega\right)^{2}}$
${ }^{2}$ Various authors call f the natural frequency and others use this term for ω.

Amplitude and Phase Shift

We can formulate the solution in terms of a single sine (or cosine) function. Letting

$$
x(t)=x_{0} \cos (\omega t)+\frac{x_{1}}{\omega} \sin (\omega t)=A \sin (\omega t+\phi)
$$

requires

$$
A=\sqrt{x_{0}^{2}+\left(x_{1} / \omega\right)^{2}}
$$

and the phase shift ϕ must be defined by

$$
\sin \phi=\frac{x_{0}}{A}, \quad \text { with } \quad \cos \phi=\frac{x_{1}}{\omega A} .
$$

Example
An object stretches a spring 6 inches in equilibrium. Assuming no driving force and no damping, set up the differential equation describing this system.

The equation has the form $x^{\prime \prime}+\omega^{2} x=0$. we ned to find w. were given displacement in equ: librium $\delta x=6$ in.

The units ane US units, so $g=32 \mathrm{ft}^{\mathrm{fec}}{ }^{2}$

$$
\delta x=6 \mathrm{in}=\frac{1}{2} \mathrm{ft}
$$

$$
\omega^{2}=\frac{g}{\delta x}=\frac{32 \mathrm{ft} / \mathrm{sec}^{2}}{1 / 2 \mathrm{ft}}=64 \frac{1}{\mathrm{sec}^{2}}
$$

The ODE is

$$
x^{\prime \prime}+64 x=0
$$

Example
A 4 pound weight stretches a spring 6 inches. The mass is released from a position 4 feet above equilibrium with an initial downward velocity of $24 \mathrm{ft} / \mathrm{sec}$. Find the equation of motion, the period, amplitude, phase shift, and frequency of the motion. (Take $g=32 \mathrm{ft} / \mathrm{sec}^{2}$.)

We can get m and k from W and δx.

$$
\begin{array}{ll}
\text { mass: } & W=m g \Rightarrow m=\frac{w}{g}=\frac{4}{32}=\frac{1}{8} \text { sings } \\
\text { Spring } \\
\text { Constant }
\end{array} \quad W=k \delta x \Rightarrow k=\frac{w}{\delta x}=\frac{4}{1 / 2} \frac{\mathrm{bb}}{\mathrm{ft}}=8 \frac{\mathrm{lb}}{\mathrm{ft}} \mathrm{l}=\frac{w^{2}=\frac{k}{m}=\frac{8}{1 / 8} \frac{1}{\sec ^{2}}=64 \frac{1}{\mathrm{sec}^{2}}}{}
$$

$$
x^{\prime \prime}+64 x=0 \quad, x(0)=4 \quad x^{\prime}(0)=-24
$$

Charact. eqn (use r insteod of m)

$$
\begin{array}{r}
r^{2}+64=0 \Rightarrow r^{2}=-64 \Rightarrow r= \pm 8 i=0 \pm 8 i \\
\alpha=0, \beta=8
\end{array}
$$

$$
\begin{gathered}
x(t)=c_{1} \cos (8 t)+c_{2} \sin (8 t)-\text { general solvtion } \\
\text { to ODE }
\end{gathered} x^{\prime}(t)=-8 c_{1} \sin (8 t)+8 c_{2} \cos (8 t) \quad \begin{aligned}
& x(0)=c_{1} \cos (0)+c_{2} \sin (0)=4 \\
& c_{1}=4
\end{aligned}
$$

$$
\begin{aligned}
x^{\prime}(0)=-8 c_{1} \sin (0)+8 c_{2} \cos (0) & =-24 \\
8 c_{2} & =-24 \Rightarrow c_{2}=\frac{-24}{8}=-3
\end{aligned}
$$

The displant is

$$
x(t)=4 \cos (8 t)-3 \sin (8 t)
$$

The period: $T=\frac{2 \pi}{8}=\frac{\pi}{4}$
Frequency: $\quad f=\frac{1}{T}=\frac{4}{\pi}$
Amplitude: $A=\sqrt{4^{2}+(-3)^{2}}=5$

Phase shift ϕ satisfies

$$
\begin{aligned}
& \sin \phi=\frac{4}{5} \text { and } \cos \phi=\frac{-3}{5} \\
& \sin \phi>0 \text { and } \cos \phi<0 \Rightarrow \phi \text { is a grad II } \\
& \text { angle }
\end{aligned}
$$

$$
\begin{aligned}
x=4 \cos (8 t) & -3 \sin (8 t) \\
A=\sqrt{4^{2} \rho(-3)^{2}} & x
\end{aligned}=\frac{5}{5}(4 \cos (8 t)-3 \sin (8 t)) \quad 10\left(\frac{4}{5} \cos (8 t)-\frac{3}{5} \sin (8 t)\right)
$$

Sum of angles formula for sine.

