October 12 Math 3260 sec. 57 Fall 2017

Section 4.6: Rank

Remarks

» We can naturally associate three vector spaces withan m x n
matrix A. Row A and Nul A are subspaces of R” and Col Ais a
subspace of R™.

» Careful! The rows of the rref do span Row A. But we go back to
the columns in the original matrix to get vectors that span Col A.
(Get a basis for Col A from A itself!)

» Careful Again! Just because the first three rows of the rref span
Row A does not mean the first three rows of A span Row A. (Get
a basis for Row A from the rref!)
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Remarks

» Row operations preserve row space, but change linear
dependence relations of rows. Row operations change column
space, but preserve linear dependence relations of columns.

» Another way to obtain a basis for Row A is to take the transpose
AT and do row operations. We have the following relationships:

ColA = RowA” and RowA = Col A”.

» The dimension of the null space is called the nullity.
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Rank

Definition: The rank of a matrix A (denoted rank A) is the dimension
of the column space of A.

Theorem: For m x n matrix A, dim Col A = dim Row A =rank A.
Moreover

rank A 4+ dim Nul A = n.

Note: This theorem states the rather obvious fact that
number of n number of _ [ total number
pivot columns non-pivot columns [ of columns |~
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Examples
(1) Ais a 5 x 4 matrix with rank A = 4. What is dim Nul A?
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Examples
(2) Suppose Ais 7 x 5 and dim Col A = 2. Determine the nullity' of A,
the rank AT, and the nullity of A”.
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"Nullity is another name for dim Nul A.
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Addendum to Invertible Matrix Theorem

Let Abe an n x n matrix. The following are equivalent to the statement
that A is invertible.

(m) The columns of A form a basis for R”
(n) Col A=R"
(0) dm ColA=n
(p) rank A=n

() Nul A= {0}
(r) dimNulA=0
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Section 6.1: Inner Product, Length, and Orthogonality
Recall: A vector u in R” can be considered an n x 1 matrix. It follows
thatu” is a 1 x n matrix

u’ =[uup - up).

Definition: For vectors u and v in R” we define the inner product of u
and v (also called the dot product) by the matrix product

Vi
T V2
u'v=_[ujus - up .| = Ui+ UVe - 4 UnVa

Vn

Note that this product produces a scalar. It is sometimes called a
scalar product.

October 12,2017 7/31



Theorem (Properties of the Inner Product)

T

We'll use the notation u-v = u'v.

Theorem: For u, v and w in R” and real scalar ¢
(@ u-v=v-u

(b) (U+Vv)-w=u-w+v-w
(c) c(u-v)=(cu)-v=u-(cv)

(d) u-u>0,withu-u=0ifandonlyifu=0.
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The Norm

The property u - u > 0 means that y/u - u always exists as a real
number.

Definition: The norm of the vector v in R” is the nonnegative number
denoted and defined by

HVH:\/ﬁ: V$+v22_|_..._|_vr2]

where vy, vo, ..., v, are the components of v.

As a directed line segment, the norm is the same as the length.
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Norm and Length

X=(1.y)
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Figure: In R? or R3, the norm corresponds to the classic geometric property
of length.
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Unit Vectors and Normalizing
Theorem: For vector v in R” and scalar ¢

levll = lelf[v]-

Definition: A vector u in R” for which |ju|| = 1 is called a unit vector.

Remark: Given any nonzero vector v in R"”, we can obtain a unit
vector u in the same direction as v
v

u=—-.
vl

This process, of dividing out the norm, is called normalizing the vector
2
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Example

Show that v/||v|| is a unit vector.
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Example

Find a unit vector in the direction of v = (1,3, 2).
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Distance in R”

Definition: For vectors u and v in R”, the distance between u and v
is denoted and defined by

dist(u,v) = |ju — v||.

Example: Find the distance between u = (4,0,—1,1) and
v=(0,0,2,7).
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Orthogonality

Definition: Two vectors are u and v orthogonal if u - v = 0.

Figure: Note that two vectors are perpendicular if |ju — v|| = ||ju + V||
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Orthogonal and Perpendicular
Show that [ju — v|| = |lu+v| ifand only ifu-v = 0.
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