October 12 Math 3260 sec. 58 Fall 2017

Section 4.6: Rank

Remarks

- We can naturally associate three vector spaces with an $m \times n$ matrix A. Row A and $\operatorname{Nul} A$ are subspaces of \mathbb{R}^{n} and $\operatorname{Col} A$ is a subspace of \mathbb{R}^{m}.
- Careful! The rows of the rref do span Row A. But we go back to the columns in the original matrix to get vectors that span Col A. (Get a basis for $\operatorname{Col} A$ from A itself!)
- Careful Again! Just because the first three rows of the rref span Row A does not mean the first three rows of A span Row A. (Get a basis for Row A from the rref!)

Remarks

- Row operations preserve row space, but change linear dependence relations of rows. Row operations change column space, but preserve linear dependence relations of columns.
- Another way to obtain a basis for Row A is to take the transpose A^{T} and do row operations. We have the following relationships:

$$
\operatorname{Col} A=\operatorname{Row} A^{T} \quad \text { and } \quad \operatorname{Row} A=\operatorname{Col} A^{T} .
$$

- The dimension of the null space is called the nullity.

Rank

Definition: The rank of a matrix A (denoted rank A) is the dimension of the column space of A.

Theorem: For $m \times n$ matrix $A, \operatorname{dim} \operatorname{Col} A=\operatorname{dim} \operatorname{Row} A=\operatorname{rank} A$. Moreover

$$
\operatorname{rank} A+\operatorname{dim} \operatorname{Nul} A=n .
$$

Note: This theorem states the rather obvious fact that
$\left\{\begin{array}{c}\text { number of } \\ \text { pivot columns }\end{array}\right\}+\left\{\begin{array}{c}\text { number of } \\ \text { non-pivot columns }\end{array}\right\}=\left\{\begin{array}{c}\text { total number } \\ \text { of columns }\end{array}\right\}$.

Examples
(1) A is a 5×4 matrix with rank $A=4$. What is $\operatorname{dim} \operatorname{Nul} A$?

Here $n=4$.

$$
\begin{aligned}
& \operatorname{rank} A+\operatorname{dinNul} A=4 \\
& 4+\operatorname{dimNel} A=4 \Rightarrow \operatorname{dimNul} A=0 .\{\overrightarrow{0}\} \\
& \quad \operatorname{Nul}(A)=\{0,
\end{aligned}
$$

What does this soy about the equation

$$
A \vec{x}=\overrightarrow{0} ?
$$

It has only the trivid solution.

Examples
(2) Suppose A is 7×5 and $\operatorname{dim} \operatorname{Col} A=2$. Determine the nullity ${ }^{1}$ of A, the rank A^{T}, and the nullity of A^{T}.

For $A, n=5 . \quad$ rank $A=\operatorname{dim} C_{0} \mid A=2$

$$
\operatorname{ronk} A+\operatorname{din} N \operatorname{lol} A=S \Rightarrow 2+\operatorname{dim} N u l A=S
$$

The nullity is $5-2=3$.

$$
\operatorname{rank} A^{\top}=\operatorname{din} C_{0}\left|A^{\top}=\operatorname{dim} R o w A=\operatorname{dim} C_{0}\right| A=2 \text {. }
$$

For $A^{\top}, ~ " n$ " is 7 .

$$
\operatorname{ronk} A^{\top}+\operatorname{dim} N \text { ul } A^{\top}=7 \Rightarrow \operatorname{dim} N l A^{\top}=S
$$

the nullity of A^{\top} is 5 .
${ }^{1}$ Nullity is another name for dim Jul A.

Addendum to Invertible Matrix Theorem

Let A be an $n \times n$ matrix. The following are equivalent to the statement that A is invertible.
(m) The columns of A form a basis for \mathbb{R}^{n}
(n) $\operatorname{Col} A=\mathbb{R}^{n}$
(o) $\operatorname{dim} \operatorname{Col} A=n$
(p) rank $A=n$
(q) $\operatorname{Nul} A=\{\mathbf{0}\}$
(r) $\operatorname{dim} \operatorname{Nul} A=0$

Section 6.1: Inner Product, Length, and Orthogonality

 Recall: A vector \mathbf{u} in \mathbb{R}^{n} can be considered an $n \times 1$ matrix. It follows that \mathbf{u}^{T} is a $1 \times n$ matrix$$
\mathbf{u}^{T}=\left[u_{1} u_{2} \cdots u_{n}\right]
$$

Definition: For vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{n} we define the inner product of \mathbf{u} and \mathbf{v} (also called the dot product) by the matrix product

$$
\mathbf{u}^{T} \mathbf{v}=\left[\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{n}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}
$$

Note that this product produces a scalar. It is sometimes called a scalar product.

Theorem (Properties of the Inner Product)

$$
\text { We'll use the notation } \quad \mathbf{u} \cdot \mathbf{v}=\mathbf{u}^{\top} \mathbf{v} \text {. }
$$

Theorem: For \mathbf{u}, \mathbf{v} and \mathbf{w} in \mathbb{R}^{n} and real scalar c
(a) $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
(b) $(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{w}$
(c) $c(\mathbf{u} \cdot \mathbf{v})=(c \mathbf{u}) \cdot \mathbf{v}=\mathbf{u} \cdot(c \mathbf{v})$
(d) $\mathbf{u} \cdot \mathbf{u} \geq 0$, with $\mathbf{u} \cdot \mathbf{u}=0$ if and only if $\mathbf{u}=\mathbf{0}$.

The Norm

The property $\mathbf{u} \cdot \mathbf{u} \geq 0$ means that $\sqrt{\mathbf{u} \cdot \mathbf{u}}$ always exists as a real number.

Definition: The norm of the vector \mathbf{v} in \mathbb{R}^{n} is the nonnegative number denoted and defined by

$$
\|\mathbf{v}\|=\sqrt{\mathbf{v} \cdot \mathbf{v}}=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}
$$

where $v_{1}, v_{2}, \ldots, v_{n}$ are the components of \mathbf{v}.

As a directed line segment, the norm is the same as the length.

Norm and Length

Figure: In \mathbb{R}^{2} or \mathbb{R}^{3}, the norm corresponds to the classic geometric property of length.

Unit Vectors and Normalizing

Theorem: For vector \mathbf{v} in \mathbb{R}^{n} and scalar c

$$
\|c \mathbf{v}\|=|c|\|\mathbf{v}\| .
$$

Definition: A vector \mathbf{u} in \mathbb{R}^{n} for which $\|\mathbf{u}\|=1$ is called a unit vector.
Remark: Given any nonzero vector \mathbf{v} in \mathbb{R}^{n}, we can obtain a unit vector \mathbf{u} in the same direction as \mathbf{v}

$$
\mathbf{u}=\frac{\mathbf{v}}{\|\mathbf{v}\|}
$$

This process, of dividing out the norm, is called normalizing the vector V.

Example
Show that $\mathbf{v} /\|\mathbf{v}\|$ is a unit vector.

$$
\begin{aligned}
& \frac{\vec{v}}{\|\vec{v}\|}: \frac{1}{\|\vec{v}\|} \vec{v} \quad \text { and }\|\vec{v}\|>0 \\
&\left\|\frac{1}{\|\vec{v}\|} \vec{v}\right\|=\left|\frac{1}{\|\vec{v}\|}\right|\|\vec{v}\| \\
&=\frac{1}{\|\vec{v}\|}\|\vec{v}\|=\frac{\|\vec{v}\|}{\|\vec{v}\|}=1
\end{aligned}
$$

Example
Find a unit vector in the direction of $\mathbf{v}=(1,3,2)$.

$$
\|\vec{v}\|^{2}=1^{2}+3^{2}+2^{2}=1+9+4=14
$$

A unit vector in the direction of \vec{v} is

$$
\frac{1}{\sqrt{14}} \vec{v}=\frac{1}{\sqrt{14}}\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{\sqrt{14}} \\
\frac{3}{\sqrt{14}} \\
\frac{2}{\sqrt{14}}
\end{array}\right]
$$

Distance in \mathbb{R}^{n}
Definition: For vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{n}, the distance between \mathbf{u} and \mathbf{v} is denoted and defined by

$$
\operatorname{dist}(\mathbf{u}, \mathbf{v})=\|\mathbf{u}-\mathbf{v}\| .
$$

Example: Find the distance between $\mathbf{u}=(4,0,-1,1)$ and $\mathbf{v}=(0,0,2,7)$.

$$
\begin{aligned}
& \vec{u}-\vec{v}=(4,0,-1,1)-(0,0,2,7) \\
& \operatorname{dist}(\vec{u}, \vec{v})=\sqrt{4^{2}+0^{2}+(-3)^{2}+(-6)^{2}}=\sqrt{61}
\end{aligned}
$$

Orthogonality

Definition: Two vectors are \mathbf{u} and \mathbf{v} orthogonal if $\mathbf{u} \cdot \mathbf{v}=0$.

Figure: Note that two vectors are perpendicular if $\|\mathbf{u}-\mathbf{v}\|=\|\mathbf{u}+\mathbf{v}\|$

Orthogonal and Perpendicular Show that $\|\mathbf{u}-\mathbf{v}\|=\|\mathbf{u}+\mathbf{v}\|$ if and only if $\mathbf{u} \cdot \mathbf{v}=0$.

Note $\|\tilde{h}-\vec{v}\|=\|\vec{u}+\vec{v}\| \Leftrightarrow\|\vec{u}-\vec{v}\|^{2}=\|\vec{u}+\vec{v}\|^{2}$

Observe

$$
\begin{aligned}
\|\vec{u}-\vec{v}\|^{2} & =(\vec{u}-\vec{v}) \cdot(\vec{u}-\vec{v})=\vec{u} \cdot(\vec{u}-\vec{v})-\vec{v} \cdot(\vec{u}-\vec{v}) \\
& =\vec{u} \cdot \vec{u}-\vec{u} \cdot \vec{v}-\vec{v} \cdot \vec{u}+\vec{v} \cdot \vec{v} \\
& =\|\vec{u}\|^{2}-2 \vec{u} \cdot \vec{v}+\|\vec{v}\|^{2}
\end{aligned}
$$

similarly,

$$
\begin{aligned}
& \text { similarly } \\
&\|\vec{u}+\vec{v}\|^{2}=\|\vec{u}\|^{2}+2 \vec{h} \cdot \vec{v}+\|\vec{v}\|^{2} \\
& \text { If }\|\vec{u}-\vec{v}\|=\|\vec{u}+\vec{v}\|
\end{aligned}
$$

Them

$$
\begin{gathered}
\|\vec{i}\|^{2}-2 \vec{u} \cdot \vec{v}+\|\cdot \vec{v}\|^{2}=\|\vec{u} \cdot\|^{2}+2 \vec{u} \cdot \vec{v}+\|\cdot \vec{v}\|^{2} \\
0=4 \vec{u} \cdot \vec{v} \Rightarrow \vec{u} \cdot \vec{v}=0
\end{gathered}
$$

If $\vec{u} \cdot \vec{v}=0$, then

$$
\begin{aligned}
\|\vec{u}-\vec{v}\|^{2} & =\|\vec{u}\|^{2}-2 \cdot 0+\|\vec{v}\|^{2} \\
& =\|\vec{u}\|^{2}+2 \cdot 0+\|\vec{v}\|^{2}=\|\vec{u}+\vec{v}\|^{2} \\
& \Rightarrow\|\vec{u}-\vec{v}\|=\|\vec{u}+\vec{v}\| .
\end{aligned}
$$

The Pythagorean Theorem
Theorem: Two vectors \mathbf{u} and \mathbf{v} are orthogonal if and only if

$$
\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}
$$

This follows directly from

$$
\|\vec{u}+\vec{v}\|^{2}=\|\vec{u}\|^{2}+2 \vec{u} \cdot \vec{v}+\|\vec{v}\|^{2}
$$

