Oct. 14 Math 1190 sec. 51 Fall 2016

Section 4.1: Related Rates

General Approach to Solving Related Rates Problems:

- Identifty known and unknown quantities and assign variables.
- Create a diagram if possible.
- Use the diagram, physical science, and mathematics to connect known quantities to those being sought.
- Relate the rates of change using implicit differentiation.
- Substitute in known quantities and solve for desired quantities.

Let's Do One Together

Pedestrians A and B are walking on straight streets that meet at right angles. A approaches the intersection at $2 \mathrm{~m} / \mathrm{sec}$, and B moves away from the intersection at $1 \mathrm{~m} / \mathrm{sec}$. Our goal is to determine the rate at which the angle θ shown in the diagram is changing when A is 10 m from the intersection and B is 20 m from the intersection?

Question

Let $A(t)$ be pedestrian A's position (distance to intersection), and $B(t)$ be pedestrian B's position. Let's make some observations:
(a) True or False A is decreasing. True
(b) True or False B is increasing. True

Question

From the diagram, which of the following are the rates of change of A and B (in m / s)?

$$
\begin{array}{ll}
\text { (a) } \frac{d A}{d t}=-2^{\mathrm{m} / \mathrm{s}} \text { and } \frac{d B}{d t}=1^{r / s} \\
\text { (b) } \frac{d A}{d t}=2 \text { and } \frac{d B}{d t}=-1 \\
\text { (c) } \frac{d A}{d t}=-2 \text { and } \frac{d B}{d t}=-1 \\
\mathrm{~B}_{1 \mathrm{~m} / \mathrm{s}} & \text { (d) } \frac{d A}{d t}=2 \text { and } \frac{d B}{d t}=1
\end{array}
$$

Relating the Rates

The pedestrians' positions and the intersection form a right triangle. So θ, A, and B are related by the equation

$$
\tan \theta=\frac{A}{B}
$$

Question: Use implicit differentiation to find an expression relating $\frac{d \theta}{d t}$ to the rates of A and B.

Question

The relation between the rates is given by $\tan \theta=\frac{A}{B}$
(a) $\frac{d \theta}{d t}=\frac{\frac{d A}{d t} B-A \frac{d B}{d t}}{B^{2}}$

$$
\begin{aligned}
& \frac{d}{d t} \tan \theta=\frac{d}{d t}\left(\frac{A}{B}\right) \\
& \sec ^{2} \theta \cdot \frac{d \theta}{d t}=\frac{\frac{d A}{d t} B-A \frac{d B}{d t}}{B^{2}}
\end{aligned}
$$

(b) $\sec ^{2}\left(\frac{d \theta}{d t}\right)=\frac{\frac{d A}{d t}}{\frac{d B}{d t}}$
(C) $\sec ^{2}(\theta) \frac{d \theta}{d t}=\frac{\frac{d A}{d t} B-A \frac{d B}{d t}}{B^{2}}$
(d) $\sec ^{2}(\theta) \frac{d \theta}{d t}=\frac{A}{B} \frac{d A}{d t}+\frac{A}{B} \frac{d B}{d t}$

The Final Result
Determine the rate at which the angle θ shown in the diagram is changing when A is 10 m from the intersection and B is 20 m from the intersection?

$$
\begin{aligned}
& \sec ^{2} \theta \frac{d \theta}{d t}=\frac{d A}{d t} B-A \frac{d B}{d t} \\
& \frac{d \theta}{d t}=\frac{\frac{d A}{d t} B-A \frac{d B}{d t}}{B^{2}} \cdot \frac{1}{\sec ^{2} \theta} \\
& =\frac{\frac{d A}{d t} B-A \frac{d B}{d t}}{B^{2}} \cdot \cos ^{2} \theta
\end{aligned}
$$

when $A=10 \mathrm{~m}, B=20 \mathrm{~m}, \frac{d A}{d t}=-2 \frac{\mathrm{~m}}{\mathrm{sec}}, \frac{d B}{d t}=1 \frac{\mathrm{~m}}{\mathrm{sec}}$.

$$
c^{2}=10^{2}+20^{2}=500 \Rightarrow c=10 \sqrt{5}
$$

Than $\cos \theta=\frac{20 \mathrm{~m}}{10 \sqrt{5} m}=\frac{2}{\sqrt{5}}$

$$
\begin{gathered}
\frac{d \theta}{d t}=\frac{\frac{d A}{d t} B-A \frac{d B}{d t}}{B^{2}} \cos ^{2} \theta \\
\begin{array}{l}
\text { at } \\
B=10 \mathrm{~m} \\
B=20 \mathrm{~m}
\end{array} \quad \frac{d \theta}{d t}=\frac{-2 \frac{\mathrm{~m}}{\sec } \cdot 20 \mathrm{~m}-10 \mathrm{~m} \cdot 1 \frac{\mathrm{~m}}{\mathrm{sec}}}{(20 \mathrm{~m})^{2}} \cdot\left(\frac{2}{\sqrt{5}}\right)^{2}
\end{gathered}
$$

$$
\begin{aligned}
& =\frac{(-40-10) \frac{m^{2}}{\sec }}{400 \mathrm{~m}^{2}} \cdot \frac{4}{5} \\
& =\frac{-50}{400} \cdot \frac{4}{\mathrm{~s}} \cdot \frac{1}{\sec } \\
& =\frac{-10}{100} \frac{1}{\mathrm{sec}}=\frac{-1}{10} \frac{1}{\sec }
\end{aligned}
$$

The ongle is decuasing at a rate of $\frac{1}{10}$ radion persecond at that moment.

Section 4.2: Maximum and Minimum Values; Critical Numbers

Definition: Let f be a function with domain D and let c be a number in D. Then $f(c)$ is

- the absolute minimum value of f on D if $f(c) \leq f(x)$ for all x in D,
- the absolute maximum value of f on D if $f(c) \geq f(x)$ for all x in D.

Note that if an absolute minimum occurs at ${ }_{c}$, then $f(c)$ is the absolute minimum value of f. Similarly, if an absolute maximum occurs at c, then $f(c)$ is the absolute maximum value of f.

Figure: Graphically, an absolute minimum is the lowest point and an absolute maximum is the highest point.

Local Maximum and Minimum

Definition: Let f be a function with domain D and let c be a number in D. Then $f(c)$ is

- a local minimum value of f if $f(c) \leq f(x)$ for x near* c
- a local maximum value of f if $f(c) \geq f(x)$ for x near c.

More precisely, to say that x is near c means that there exists an open interval containing c such that for all x in this interval the respective inequality holds.

Figure: Graphically, local maxes and mins are relative high and low points.

Figure: Identify local and absolute maxima and minima (if possible).

Terminology

Maxima--plural of maximum
Minima--plural of minimum

Extremum-is either a maximum or a minimum

Extrema-plural of extremum
"Global" is another word for absolute.
"Relative" is another word for local.

Extreme Value Theorem
Suppose f is continuous on a closed interval $[a, b]$. Then f attains an absolute maximum value $f(c)$ and f attains an absolute minimum value $f(d)$ for some numbers c and d in $[a, b]$.
absolute max and min values con occur between a and b or at on endpoint a and/or b.

Fermat's Theorem

Note that the Extreme Value Theorem tells us that a continuous function is guaranteed to take an absolute maximum and absolute minimum on a closed interval. It does not provide a method for actually finding these values or where they occur. For that, the following theorem due to Fermat is helpful.

Theorem: If f has a local extremum at c and if $f^{\prime}(c)$ exists, then

$$
f^{\prime}(c)=0
$$

Figure: We note that at the local extrema, the tangent line would be horizontal.

Is the Converse of our Theorem True?
Suppose a function f satisfies $f^{\prime}(0)=0$. Can we conclude that $f(0)$ is a local maximum or local minimum?

Does an extremum have to correspond to a horizontal tangent? No
Could $f(c)$ be a local extremum but have $f^{\prime}(c)$ not exist? Yes

The classic example is $y=|x|$

It has a local (infact global) minimum of zero © $x=0$. But y is not differentiable, (c) $x=0$.

Critical Number

Definition: A critical number of a function f is a number c in its domain such that either

$$
f^{\prime}(c)=0 \text { or } f^{\prime}(c) \text { does not exist. }
$$

Theorem:If f has a local extremum at c, then c is a critical number of f.

Some authors call critical numbers critical points.

Example
Find all of the critical numbers of the function.
(a) $f(x)=x^{4}-2 x^{2}+5$

We need to know (1) whee is $f^{\prime}(x)=0$ and
(2) where is $f^{\prime}(x)$ undefined.

The domoin is $(-\infty, \infty)$.

$$
f^{\prime}(x)=4 x^{3}-4 x=4 x\left(x^{2}-1\right)=4 x(x-1)(x+1)
$$

$f^{\prime}(x)=0$ if $x=0, x=1$, or $x=-1 . f^{\prime}(x)$ is defined everywhere.
f has three critice numbers, 0,1 , and -1 .

