
October 14 Math 2306 sec 51 Fall 2015

Section 5.1.1: Free Undamped Spring/Mass Systems

Simple Harmonic Motion: Displacement x(t) satisfies

x ′′ + ω2x = 0, x(0) = x0, x ′(0) = x1

Here, x0 and x1 are the initial position (relative to equilibrium) and
velocity, respectively. The solution is

x(t) = x0 cos(ωt) +
x1

ω
sin(ωt)

called the equation of motion. Characteristics of the system include
I the period T = 2π

ω ,
I the frequency f = 1

T = ω
2π

I the circular frequency ω, and

I the amplitude or maximum displacement A =
√

x2
0 + (x1/ω)2
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Amplitude and Phase Shift

We can formulate the solution in terms of a single sine (or cosine)
function. Letting

x(t) = x0 cos(ωt) +
x1

ω
sin(ωt) = A sin(ωt + φ)

requires

A =
√

x2
0 + (x1/ω)2,

and the phase shift φ must be defined by (for a sine representation)

sinφ =
x0

A
, with cosφ =

x1

ωA
.
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Example

A 4 pound weight stretches a spring 6 inches. The mass is released
from a position 4 feet below equilibrium with an initial upward velocity
of 24 ft/sec. Find the equation of motion, the period, amplitude, phase
shift, and frequency of the motion. (Take g = 32 ft/sec2.)

We determined that k = 8 lb/ft, m = 1/8 slugs, and

x(t) = 4 cos(8t)− 3 sin(8t)
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5.1.2: Free Damped Motion

Figure: If a damping force is added, we’ll assume that this force is
proportional to the instantaneous velocity.
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Free Damped Motion

Force = Force of spring + Force of damping

m
d2x
dt2 = −βdx

dt
− kx =⇒ d2x

dt2 + 2λ
dx
dt

+ ω2x = 0

where

2λ =
β

m
and ω =

√
k
m
.

Three qualitatively different solutions can occur depending on the
nature of the roots of the characteristic equation

r2 + 2λr + ω2 = 0 with roots r1,2 = −λ±
√
λ2 − ω2.
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Case 1: λ2 > ω2 Overdamped

x(t) = e−λt
(

c1et
√
λ2−ω2

+ c2e−t
√
λ2−ω2

)

Figure: Two distinct real roots. No oscillations. Approach to equilibrium may
be slow.
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Case 2: λ2 = ω2 Critically Damped

x(t) = e−λt (c1 + c2t)

Figure: One real root. No oscillations. Fastest approach to equilibrium.
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Case 3: λ2 < ω2 Underdamped

x(t) = e−λt (c1 cos(ω1t) + c2 sin(ω1t)) , ω1 =
√
ω2 − λ2

Figure: Complex conjugate roots. Oscillations occur as the system
approaches (resting) equilibrium.
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Comparison of Damping

Figure: Comparison of three damping types.
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Example
A 2 kg mass is attached to a spring whose spring constant is 12 N/m.
The surrounding medium offers a damping force numerically equal to
10 times the instantaneous velocity. Write the differential equation
describing this system. Determine if the motion is underdamped,
overdamped or critically damped.
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Example
A 3 kg mass is attached to a spring whose spring constant is 12 N/m.
The surrounding medium offers a damping force numerically equal to
12 times the instantaneous velocity. Write the differential equation
describing this system. Determine if the motion is underdamped,
overdamped or critically damped. If the mass is released from the
equilibrium position with an upward velocity of 1 m/sec, solve the
resulting initial value problem.
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5.1.3: Driven Motion

We can consider the application of an external driving force (with or
without damping). Assume a time dependent force f (t) is applied to
the system. The ODE governing displacement becomes

m
d2x
dt2 = −βdx

dt
− kx + f (t), β ≥ 0.

Divide out m and let F (t) = f (t)/m to obtain the nonhomogeneous
equation

d2x
dt2 + 2λ

dx
dt

+ ω2x = F (t)
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Forced Undamped Motion and Resonance

Consider the case F (t) = F0 cos(γt) or F (t) = F0 sin(γt), and λ = 0.
Two cases arise

(1) γ 6= ω, and (2) γ = ω.

The DE is
x ′′ + ω2x = F0 sin(γt)

with complementary solution

xc = c1 cos(ωt) + c2 sin(ωt).
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x ′′ + ω2x = F0 sin(γt)

Note that

xc = c1 cos(ωt) + c2 sin(ωt).

Using the method of undetermined coefficients, the first guess to the
particular solution is

xp = A cos(γt)+B sin(γt)
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Forced Undamped Motion and Resonance

Consider the case F (t) = F0 cos(γt) or F (t) = F0 sin(γt), and λ = 0.
Two cases arise

(1) γ 6= ω, and (2) γ = ω.

Case (1): x ′′ + ω2x = F0 sin(γt), x(0) = 0, x ′(0) = 0

x(t) =
F0

ω2 − γ2

(
sin(γt)− γ

ω
sin(ωt)

)
If γ ≈ ω, the amplitude of motion could be rather large!
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Pure Resonance

Case (2): x ′′ + ω2x = F0 sin(ωt), x(0) = 0, x ′(0) = 0

x(t) =
F0

2ω2 sin(ωt)− F0

2ω
t cos(ωt)

Note that the amplitude, α, of the second term is a function of t:

α(t) =
F0t
2ω

which grows without bound!

Forced Motion and Resonance Applet

Choose ”Elongation diagram” to see a plot of displacement. Try exciter
frequencies close to ω.
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http://www.walter-fendt.de/ph14e/resonance.htm

