October 14 Math 2306 sec 54 Fall 2015

Section 5.1.1: Free Undamped Spring/Mass Systems
Simple Harmonic Motion: for displacement x(t) of the mass
X" +uw?x =0, x(0)=x, x'(0)=x
Here, xo and x; are the initial position (relative to equilibrium) and

velocity, respectively. The solution is

X(t) = xo cos(wt) + % sin(wt)
called the equation of motion. Characteristics of the system include
> the period T = 27,
> the frequency f = + = £
» the circular frequency w, and

> the amplitude or maximum displacement A = /X2 + (X1 /w)?
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Amplitude and Phase Shift

We can formulate the solution in terms of a single sine (or cosine)
function. Letting

X(t) = X0 cos(wt) + - sin(wt) = Asin(wt + )

requires
A=/x¢+ (x1/w)?,
and the phase shift ¢ must be defined by (for a sine representation)

sinqﬁ:%, with cos<z>:x—24.
w
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5.1.2: Free Damped Motion

fluid resists motion

Fda_mping = .8 E

B = 0 (by conservation of energy)

Figure: If a damping force is added, we’ll assume that this force is
proportional to the instantaneous velocity.
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Free Damped Motion

Force = Force of spring + Force of damping

#x dx Px . d

X o,
mdt2_ 5dt kx = dt2+2)\dt+wx_0
where
2)\:E and w = 5
m m

Three qualitatively different solutions can occur depending on the
nature of the roots of the characteristic equation

P2 xr+w? =0 withroots ro=—\+X2— w2
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Case 1: \? > w? Overdamped
x(t) = e M <c1 e!V¥ | gt A2“’2>

x(t

Highly over-danped

!

Figure: Two distinct real roots. No oscillations. Approach to equilibrium may
be slow.
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Case 2: \? = w? Critically Damped

x(t) = e (¢1 + oot)

x(t)

critical darmmping

Figure: One real root. No oscillations. Fastest approach to equilibrium.
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Case 3: \? < w? Underdamped

x(t) = e M (cy cos(wit) + casin(wit)), wi = Vw2 — X2

x(t) underdamped

NA A
Vil

Figure: Complex conjugate roots. Oscillations occur as the system
approaches (resting) equilibrium.
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Comparison of Damping
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Figure: Comparison of three damping types.
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Example

A 2 kg mass is attached to a spring whose spring constant is 12 N/m.
The surrounding medium offers a damping force numerically equal to
10 times the instantaneous velocity. Write the differential equation
describing this system. Determine if the motion is underdamped,
overdamped or critically damped.

3T

m=2t 3= 10 ko k=12

Sec 7
" ! _
mx + (3)(|+ kx o = 2x + 10x Nx =0

W' +Sx+bx =0 2 xS emd w0

Az—wz: (_75:)7-_ 6 < T - v = ;>O o\jﬁ-gowpbl‘
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Example

A 3 kg mass is attached to a spring whose spring constant is 12 N/m.
The surrounding medium offers a damping force numerically equal to
12 times the instantaneous velocity. Write the differential equation
describing this system. Determine if the motion is underdamped,
overdamped or critically damped. If the mass is released from the

equilibrium position with an upward velocity of 1 m/sec, solve the
resulting initial value problem

_5-_ - 2.“v\
n |
mx”-f(sy|+l4,y:o , 3x +12x +2%x = O

$+dx +Uxzo  DEH,

A - wl'-bl‘bl:O = cr i colly ‘;G'W‘AML
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The eguahor ob mokion

-2t
xlb)= -te
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5.1.3: Driven Motion

We can consider the application of an external driving force (with or
without damping). Assume a time dependent force f(t) is applied to
the system. The ODE governing displacement becomes

a’x ax
Rl ot > 0.
m-p Bdt kx +1(t), 5>0

Divide out m and let F(t) = f(t)/m to obtain the nonhomogeneous
equation

d2 ax

L
= %— ond  WEC ~
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Forced Undamped Motion and Resonance
Consider the case F(t) = Fgcos(~t) or F(t) = Fgsin(yt), and A = 0.
Two cases arise
(1) 7v#w, and(2) y=uw.
The DE is

X" + w?x = Fysin(yt)

with complementary solution

Xc = €1 cos(wt) + ¢o sin(wt).
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x" + w2x = Fysin(vt)

Note that
Xc = ¢y cos(wt) + ¢z sin(wt).

Using the method of undetermined coefficients, the first guess to the
particular solution is

Xp = Acos(vt)+Bsin(yt)
£ Y¥+w, bhis doegad duplicele X So be a currech Larm,

lc x‘ w '\’k" A""f\.“"\{r XL- T»‘* CN‘CCI' -Cou“ i<
= J

Xp= (A s (¥ 18Sn(E) b= Ak Coulwb) B kSin (k)
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Forced Undamped Motion and Resonance

Consider the case F(t) = Fycos(vt) or F(t) = Fgsin(~t), and A = 0.

Two cases arise

(1) 7#w, and(2) v =w.

Case (1): x" +w?x = Fysin(yt), x(0)=0, x'(0)=0

x(t) = wzli)72 (sin(yt) - %sin(wt))

If v ~ w, the amplitude of motion could be rather large!
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Pure Resonance

Case (2): X"+ w?x = Fysin(wt), x(0)=0, x'(0)=0

 Fo . Fo
x(t) = 2,2 sin(wt) — Zl‘cos(wz‘)
Note that the amplitude, o, of the second term is a function of :
Fot
=3,

which grows without bound!

Choose "Elongation diagram” to see a plot of displacement. Try exciter
frequencies close to w.
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http://www.walter-fendt.de/ph14e/resonance.htm

5.1.4: Series Circuit Analog

Potential Drops Across Components:

; dq
iR=R—=
R dr
NN N
di _ . d°g
dr dr?
+
oF 3.
1
C —qg
(e
| |
|

Figure: Kirchhoff’s Law: The charge g on the capacitor satisfies
Lg" + Rq' + £q = E(t).
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LRC Series Circuit (Free Electrical Vibrations)

2
199, goq 1

dr2 a Tcd=0

If the applied force E(t) = 0, then the electrical vibrations of the
circuit are said to be free. These are categorized as

overdamped if R? —4L/C > 0,
critically damped if R?2 —4L/C = 0,
underdamped if R2—-4L/C < 0.
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Example

An LRC series circuit with no applied force has an inductance of
L = 2h and capacitance of C = 5 x 10~3f. Determine the condition on
the resistor such that the electrical vibrations are

(a) Overdamped,
(b) Critically damped, or

(¢) Underdamped.
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