October 15 MATH 1113 sec. 52 Fall 2018

Section 5.5: Solving Exponential and Logarithmic Equations

Base-Exponent Equality For any a > 0 with $a \neq 1$, and for any real numbers *x* and *y*

$$a^x = a^y$$
 if and only if $x = y$.

Logarithm Equality For and a > 0 with $a \neq 1$, and for any positive numbers *x* and *y*

$$\log_a x = \log_a y$$
 if and only if $x = y$.

Inverse Function For any a > 0 with $a \neq 1$

$$a^{\log_a x} = x$$
 for every $x > 0$
 $\log_a(a^x) = x$ for every real x .

Example

Solve the equation $3^{2x+1} = 81$. Show that the same result is obtained by two approaches.

(a) by using the fact that $81 = 3^4$ and equating exponents.

$$3^{2x+1} = 81 \Rightarrow 3^{2x+1} = 3^{4}$$

$$3^{2x+1} = 7$$

$$3^{2x+1} = 7$$

$$3^{2x+1} = 7$$

$$3^{2x} = 3$$

$$x = \frac{3}{2}$$

October 12, 2018 2 / 42

Example

Solve the equation $3^{2x+1} = 81$. Show that the same result is obtained by two approaches.

(b) by using the base 3 logarithm as an inverse function.

$$3^{2x+1} = 8| \qquad \text{Tohe log box 3 of both side}.$$

$$0x_{5_{3}}(3^{2x+1}) = 0x_{5_{3}}(8|) \qquad \text{since } 3^{2} = 8|$$

$$(2x+1) \log_{3}(3) = 4$$

$$(2x+1) \cdot | = 4 \implies 2x = 3 \implies x = \frac{3}{2}$$

イロト イポト イヨト イヨト

October 12, 2018

3/42

Example

Find an exact solution¹ to the equation

 $2^{x+1} = 5^x$ Well use the natural log.

 $\ln(2^{\times \tau^1}) = \ln 5^{\times}$ solve for x (X+1) Jn Z = x Jn S =) ln2 = xln5 - xln2 Xln2 + ln2 = xln5 X(lnS-lnZ) = lnZ $X = \frac{l_n 2}{l_n s - l_n 2} = \frac{l_n 2}{l_n (\frac{s}{2})}$

¹An exact solution may be a number such as $\sqrt{2}$ or In(7) which requires a calculator to approximate as a decimal.

Figure: Plots of $y = 2^{x+1}$ and $y = 5^x$ together. The curves intersect at the solution $x = \ln 2/(\ln 5 - \ln 2) \approx 0.7565$. Which curve is $y = 2^{x+1}$, red or blue?

October 12, 2018

5/42

Question

An exact solution to $3^{-x} = 4^{x-1}$ can be found using the natural logarithm. An exact solution is $J_{n3}^{x} = J_{n4}^{x-1}$ -x Jn3 = (x-1) Jn4 (a) $x = \frac{\ln 4}{\ln 4 - \ln 3}$ = xJuy - Jny (b) $x = \frac{\ln 3}{\ln 4 - \ln 2}$ Juy = X Juy + X Ju3 $(c) x = \frac{\ln 4}{\ln 4 + \ln 3} = \frac{\sqrt{\sqrt{7}}}{\sqrt{7}}$ =x (Jn 4 + Ju3) (d) $x = \frac{\ln 3}{\ln 4 + \ln 3}$ X = lny Ony +ln3

October 12, 2018

6/42

(e) I know how to do this, but my answer is not here

An Observation

To solve $2^{x+1} = 5^x$, we used the natural log. But we have choices. Use the change of base formula to show that our solution

lozz t, Jozs - log Z

Question

Jack and Diane are solving $3^{-x} = 4^{x-1}$. They arrive at the solutions

A D K A B K A B K A B K B B

October 12, 2018

9/42

(c) Both answers are correct; they are the same number.

(d) Both answers are incorrect.

Log Equations & Verifying Answers

Double checking answers is always recommended. When dealing with functions whose domains are restricted, **answer verification** is critical.

Use properties of logarithms to solve the equation log(x - 1) + log(x - 2) = log 12

October 12, 2018 11 / 42

・ロト・西ト・ヨト・ヨー うへの