October 15 MATH 1113 sec. 52 Fall 2018

Section 5.5: Solving Exponential and Logarithmic Equations

Base-Exponent Equality For any $a>0$ with $a \neq 1$, and for any real numbers x and y

$$
a^{x}=a^{y} \quad \text { if and only if } x=y .
$$

Logarithm Equality For and $a>0$ with $a \neq 1$, and for any positive numbers x and y

$$
\log _{a} x=\log _{a} y \text { if and only if } x=y .
$$

Inverse Function For any $a>0$ with $a \neq 1$

$$
\begin{gathered}
a^{\log _{a} x}=x \quad \text { for every } \quad x>0 \\
\log _{a}\left(a^{x}\right)=x \quad \text { for every real } x .
\end{gathered}
$$

Example
Solve the equation $3^{2 x+1}=81$. Show that the same result is obtained by two approaches.
(a) by using the fact that $81=3^{4}$ and equating exponents.

$$
\begin{aligned}
& 3^{2 x+1}=81 \Rightarrow 3^{2 x+1}=3^{4} \quad \text { Since } a^{x}=a^{y} \\
& \Rightarrow x=y \\
& 2 x+1=4 \\
& 2 x=3 \\
& x=\frac{3}{2}
\end{aligned}
$$

Example
Solve the equation $3^{2 x+1}=81$. Show that the same result is obtained by two approaches.
(b) by using the base 3 logarithm as an inverse function.
$3^{2 x+1}=81 \quad$ Tole \log hose 3 of hot side.

$$
\begin{aligned}
& \log _{3}\left(3^{2 x+1}\right)=\log _{3}(81) \quad \text { since } 3^{4}=81 \\
& (2 x+1) \log _{3}(3)=4 \\
& (2 x+1) \cdot 1=4 \Rightarrow 2 x=3 \Rightarrow x=\frac{3}{2}
\end{aligned}
$$

Example
Find an exact solution ${ }^{1}$ to the equation
$2^{x+1}=5^{x}$
well use the nature \log.

$$
\begin{aligned}
& \ln \left(2^{x+1}\right)=\ln 5^{x} \\
&(x+1) \ln 2=x \ln 5 \quad \text { solve for } x \\
& x \ln 2+\ln 2=x \ln 5 \Rightarrow \ln 2=x \ln 5-x \ln 2 \\
& x(\ln 5-\ln 2)=\ln 2 \\
& x=\frac{\ln 2}{\ln 5-\ln 2}=\frac{\ln 2}{\ln \left(\frac{5}{2}\right)}
\end{aligned}
$$

${ }^{1}$ An exact solution may be a number such as $\sqrt{2}$ or $\ln (7)$ which requires a calculator to approximate as a decimal.

Graphical Solution to $2^{x+1}=5^{x}$

Figure: Plots of $y=2^{x+1}$ and $y=5^{x}$ together. The curves intersect at the solution $x=\ln 2 /(\ln 5-\ln 2) \approx 0.7565$.
Which curve is $y=2^{x+1}$, red or blue?

Question
An exact solution to $3^{-x}=4^{x-1}$ can be found using the natural logarithm. An exact solution is
(a) $x=\frac{\ln 4}{\ln 4-\ln 3}$
(b) $x=\frac{\ln 3}{\ln 4-\ln 3}$

$$
\begin{aligned}
\ln 3^{-x} & =\ln 4^{x-1} \\
-x \ln 3 & =(x-1) \ln 4 \\
& =x \ln 4-\ln 4
\end{aligned}
$$

(c) $x=\frac{\ln 4}{\ln 4+\ln 3}=\frac{-\ln 4}{-\ln 4-\ln 3}$

$$
\begin{aligned}
\ln 4 & =x \ln 4+x \ln 3 \\
& =x(\ln 4+\ln 3)
\end{aligned}
$$

(d) $x=\frac{\ln 3}{\ln 4+\ln 3}$

$$
x=\frac{\ln 4}{\ln 4+\ln 3}
$$

(e) I know how to do this, but my answer is not here

An Observation
To solve $2^{x+1}=5^{x}$, we used the natural log. But we have choices. Use the change of base formula to show that our solution

$$
\frac{\ln 2}{\ln 5-\ln 2}=\frac{\log 2}{\log 5-\log 2}
$$

By the change of base force

$$
\begin{aligned}
\ln 2 & =\frac{\log 2}{\log e} \quad \ln 5=\frac{\log 5}{\log e} \\
\frac{\ln 2}{\ln 5-\ln 2} & =\frac{\frac{\log 2}{\log e}}{\frac{\log 5}{\log e}-\frac{\log 2}{\log e}} \cdot\left(\frac{\log e}{\log e}\right)
\end{aligned}
$$

$$
=\frac{\log 2}{\log 5-\log 2}
$$

Question

Jack and Diane are solving $3^{-x}=4^{x-1}$. They arrive at the solutions

$$
\text { Jack's } \frac{\ln 4}{\ln 4+\ln 3} \quad \text { Diane's } \frac{\log _{3}(4)}{\log _{3}(4)+1} .
$$

Which of the following statements is true?
(a) Jack's answer is correct, and Diane's is incorrect.

$$
\log _{3}(3)=1
$$

(b) Diane's answer is correct, and Jack's is incorrect.
(c) Both answers are correct; they are the same number.
(d) Both answers are incorrect.

Log Equations \& Verifying Answers
Double checking answers is always recommended. When dealing with functions whose domains are restricted, answer verification is critical.

Use properties of logarithms to solve the equation

$$
\log (x-1)+\log (x-2)=\log 12
$$

$$
\begin{array}{rlr}
\log ((x-1)(x-2)) & =\log 12 & \\
\log \left(x^{2}-3 x+2\right)=\log 12 & \log a=\log \\
\Rightarrow a= \\
x^{2}-3 x+2=12 \\
x^{2}-3 x-10 & =0 \\
(x+2)(x-5) & =0 \Rightarrow x=5 \text { or } x=-2
\end{array}
$$

October 12, 2018

We have to detanine if both onswers sothe the orisingel equation.

$$
\log (x-1)+\log (x-2)=\log 12
$$

Chech 5 :

$$
\begin{aligned}
& \log (s-1)+\log (s-2)= \\
& \log (4)+\log (3)=\log (4 \cdot 3)=\log 12
\end{aligned}
$$

S solves the equotion
Chach-2: $\quad \log (-2-1)+\log (-2-2)=$

$$
\begin{aligned}
& -2-1)+\log (-2-2)= \\
& \log (-3)+\log (-4) \text { b.th undefined }
\end{aligned}
$$

-2 is rot a solction

