October 17 MATH 1113 sec. 51 Fall 2018

Section 5.5: Solving Exponential and Logarithmic Equations

Base-Exponent Equality For any a > 0 with $a \ne 1$, and for any real numbers x and y

$$a^x = a^y$$
 if and only if $x = y$.

Logarithm Equality For and a > 0 with $a \ne 1$, and for any positive numbers x and y

$$\log_a x = \log_a y$$
 if and only if $x = y$.

Inverse Function For any a > 0 with $a \ne 1$

$$a^{\log_a x} = x$$
 for every $x > 0$

$$\log_a(a^x) = x$$
 for every real x .

Log Equations & Verifying Answers

Double checking answers is always recommended. When dealing with functions whose domains are restricted, **answer verification** is critical.

Use properties of logarithms to solve the equation $2\log_5(x) = \log_5(x+10) + 1$ Dosc (5) = 1 $\log_5(\chi^2)$: $\log_5(\chi+10) + \log_5(5)$ = loss (s(x+10)) x2 = 5 (x-16) (x-10)(x+5) = 0x=10 and x=-5 The quadratic has 2 solutions

Check to see if they are both solutions to the original

2 los (10) = los (10+10)+1 Check 10: = logs (20) + logs (5) = logs (5.20) · loss (100) logs (102) = logs (100)

Check -5: 20035 (-5) = 1035 (-5+10) +1 undefied

-S is not a solution * -s would be a solution of

《□》《圖》《意》《意》 章

1 08 5 (x2) = 102 5 (x+10)+ 1

Question

Solve the equation $\log_6 x + \log_6 (x - 1) = 1$. (Hint: $\log_6 6 = 1$.)

(a)
$$x = 3$$
 or $x = -2$

$$\log_{\epsilon}(x(x-1)) = \log_{\epsilon}(\zeta)$$

(b)
$$x = 2$$
 or $x = -3$

(c)
$$x = 3$$

(d)
$$x - 3$$

(d)
$$x = 2$$

(e)
$$x = 0$$
 or $x = 1$

Combining Skills

Find all solutions of the equation¹

$$\frac{e^{x} + e^{-x}}{2} = 2$$

$$\overset{e}{k} + \overset{e}{e} = 4 \qquad \text{well get a quadratic equation by multiplying}$$

$$\text{Both sides by } \overset{e}{k}.$$

$$\overset{e}{k} (\overset{e}{k} + \overset{e}{e}) = 4\overset{e}{e}$$

$$\overset{e}{k} (\overset{e}{k} + \overset{e}{e}) = 4\overset{e}{e} \qquad \overset{e}{e} \cdot \overset{e}{e} = 0$$

$$\overset{e}{k} (\overset{e}{k})^{2} + \overset{e}{e} \overset{e}{e} = 4\overset{e}{e} \qquad \overset{e}{e} \cdot \overset{e}{e} = 0$$

$$\overset{e}{k} (\overset{e}{k})^{2} + 1 = 4\overset{e}{e} \implies (\overset{e}{k})^{2} - 4\overset{e}{e} + 1 = 0$$

¹The function $f(x) = \frac{e^x + e^{-x}}{2}$ is a well known function called the *hyperbolic cosine* and

If u: e, the equation is

Well complete the square

$$(u-2)^2-3=0$$

$$(u-2)^2 = 3$$

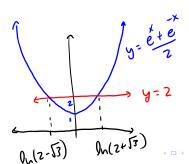
$$e^{x} = 2+\sqrt{3}$$
 or $e^{x} = 2-\sqrt{3}$

6 / 35

Both are positive, so both give valid solutions

Use the natural log to solve for x

$$\ln e^{\times} = \ln(2+\sqrt{3})$$
 $\ln e^{\times} = \ln(2-\sqrt{3})$
 $\times = \ln(2+\sqrt{3})$ $\times = \ln(2-\sqrt{3})$



7 / 35

Applications

When a quantity Q changes in time according to the model $Q(t) = Q_0 e^{kt}$, it is said to experience exponential growth (k > 0) or exponential decay (k < 0). Here, Q_0 is the constant initial quantity Q(0), and k is a constant. Examples of such phenomena include

- population changes (over small time frame),
- continuously compounded interest (on deposit or loan amount),
- substances subject to radio active decay

Generally, the model for exponential decay is written $Q(t) = Q_0 e^{-kt}$, and for growth it is written as $Q(t) = Q_0 e^{kt}$ so that it is always assumed that k > 0.

Example

The 44 Ti titanium isotope decays to 44 Ca, a stable calcium isotope. The mass Q is subject to exponential decay

$$Q(t) = Q_0 e^{-kt}$$
 for t in years, and some $k > 0$.

If the half life (amount of time for the mass to reduce by 50%) is 60 years, determine the value of k.

We know that
$$Q(60)$$
 is one half of $Q(0)$. Note $Q(0) = Q$, $e^{k\cdot 0} = Q$, $(1) = Q$.

$$Q(60) = Q \cdot e^{k\cdot 60} = Q \cdot e^{-60k}$$

String $Q(60)$ equal to $\frac{1}{2}$ $Q(6)$

$$Q \cdot e^{-60k} = \frac{1}{2} Q_0$$

October 15, 2018 9 / 35

(encel Qo and solve for k

$$e^{-60k} = \frac{1}{2}$$
Use $log:$

$$ln(\frac{-60k}{e}) = ln(\frac{1}{2})$$

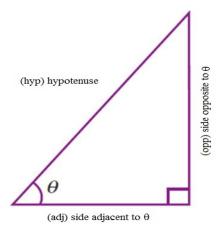
$$-60k = ln(z^{-1}) = -ln 2$$

$$k = \frac{-ln2}{-60} = \frac{ln2}{60}$$

So
$$k = \frac{9n2}{60}$$
 and $Q(k) = Q_0 e^{\frac{9n2}{60}t}$

Sections 6.1 & 6.2: Trigonometric Functions of Acute Angles

In this section, we are going to define six new functions called **trigonometric functions**. We begin with an acute angle θ in a right triangle with the sides whose lengths are labeled:



15/35

Sine, Cosine, and Tangent

For the acute angle θ , we define the three numbers as follows

$$\sin \theta = \frac{\mathsf{opp}}{\mathsf{hyp}},$$
 read as "sine theta" $\cos \theta = \frac{\mathsf{adj}}{\mathsf{hyp}},$ read as "cosine theta" $\tan \theta = \frac{\mathsf{opp}}{\mathsf{adi}},$ read as "tangent theta"

Note that these are numbers, ratios of side lengths, and have no units.

It may be convenient to enclose the argument of a trig function in parentheses. That is,

$$\sin \theta = \sin(\theta)$$
.

Cosecant, Secant, and Cotangent

The remaining three trigonometric functions are the reciprocals of the first three

$$\csc \theta = \frac{\mathsf{hyp}}{\mathsf{opp}} = \frac{1}{\sin \theta},$$
 read as "cosecant theta" $\sec \theta = \frac{\mathsf{hyp}}{\mathsf{adj}} = \frac{1}{\cos \theta},$ read as "secant theta" $\cot \theta = \frac{\mathsf{adj}}{\mathsf{opp}} = \frac{1}{\tan \theta},$ read as "cotangent theta"

A Word on Notation

The trigonometric ratios define functions:

input angle number \rightarrow output ratio number.

From the definitions, we see that

$$\csc\theta = \frac{1}{\sin\theta}.$$

Functions have arguments. It is NOT acceptable to write the above relationship as

$$csc = \frac{1}{sin}$$
.