October 17 MATH 1113 sec. 52 Fall 2018

Section 5.5: Solving Exponential and Logarithmic Equations

Base-Exponent Equality For any a > 0 with $a \neq 1$, and for any real numbers *x* and *y*

$$a^x = a^y$$
 if and only if $x = y$.

Logarithm Equality For and a > 0 with $a \neq 1$, and for any positive numbers *x* and *y*

$$\log_a x = \log_a y$$
 if and only if $x = y$.

Inverse Function For any a > 0 with $a \neq 1$

$$a^{\log_a x} = x$$
 for every $x > 0$
 $\log_a(a^x) = x$ for every real x .

Log Equations & Verifying Answers

Double checking answers is always recommended. When dealing with functions whose domains are restricted, **answer verification** is critical.

Use properties of logarithms to solve the equation $2\log_5(x) = \log_5(x+10) + 1$ log= (5)= 1 $\log_{5}(x^{2}) = \log_{5}(x+10) + \log_{5}(5)$ $\log_{S}(x^{2}) = \log_{S}(S(x+10))$ $x^{2} = S(x+10)$ $y^2 - \zeta_x - 5^0 = 0 \implies (x - 10)(x + 5) = 0$ x=10 or x=-5 Both solve the quadratic equation. We'll check to se

if they solve the log equation

$$2 \log_{5}(x) = \log_{5}(x+10) + 1 = \log_{5}(x+10) + \log_{5}(5)$$

Check 10: LHS $2 \log_{5}(10) = \log_{5}(10^{2}) = \log_{5}(100)$
 $PHS \log_{5}(10+10) + \log_{5}(5) = \log_{5}(20) + \log_{5}(5)$
 $= \log_{5}(20.5)$
 $= \log_{5}(20.5)$
 $= \log_{5}(100)$
10 is a solution.
Check - S: LHS $2\log_{5}(-5)$ undefined
-5 is not a solution
There is one solution, 10.

Question

Solve the equation $\log_6 x + \log_6(x - 1) = 1$. (Hint: $\log_6 6 = 1$.)

(a)
$$x = 3 \text{ or } x = -2$$

(b) $x = 2 \text{ or } x = -3$
(c) $x = 3$
(d) $x = 2$
(e) $x = 0 \text{ or } x = 1$
 $y_{0} (x(x-1)) = 0$
 $(x(x-1)) = 0$
 $(x(x-1)) = 0$
 $(x-3)(x+1) = 0$
 $(x-3)(x+1$

イロト イロト イヨト イヨト 一日

October 15, 2018

4/35

Combining Skills

Find all solutions of the equation¹

¹The function $f(x) = \frac{e^x + e^{-x}}{2}$ is a well known function called the *hyperbolic cosine*

October 15, 2018 7 / 35

イロト 不得 トイヨト イヨト 二日

Applications

When a quantity Q changes in time according to the model $Q(t) = Q_0 e^{kt}$, it is said to experience *exponential growth* (k > 0) or *exponential decay* (k < 0). Here, Q_0 is the constant initial quantity Q(0), and k is a constant. Examples of such phenomena include

- population changes (over small time frame),
- continuously compounded interest (on deposit or loan amount),
- substances subject to radio active decay

Generally, the model for exponential decay is written $Q(t) = Q_0 e^{-kt}$, and for growth it is written as $Q(t) = Q_0 e^{kt}$ so that it is always assumed that k > 0.

Example

The ⁴⁴Ti titanium isotope decays to ⁴⁴Ca, a stable calcium isotope. The mass Q is subject to exponential decay

$$Q(t) = Q_0 e^{-kt}$$
 for t in years, and some $k > 0$.

October 15, 2018

9/35

If the half life (amount of time for the mass to reduce by 50%) is 60 years, determine the value of k.

serve sime that
$$Q(60) = \frac{1}{2}Q(0)$$

 $Q(0) = Q_0 e^{-k \cdot 0} = Q_0 \cdot 1 = Q_0$
 $Q(60) = Q_0 e^{-k \cdot 60} = Q_0 e^{-60k}$
Setting $Q(60) = q_0 q + 0 + \frac{1}{2}Q(0)$
 $Q(60) = \frac{1}{2}Q(0)$

$$Q_{0} e^{-b0k} = \frac{1}{2}Q_{0}$$
Divide by Q_{0} , solut for k .

$$e^{60k} = \frac{1}{2}$$
Take the natural loss

$$D_{0} \left(e^{-b0k} \right) = D_{0} \left(\frac{1}{2} \right) = J_{0} \left(\frac{1}{2} \right)$$

$$- 60k = -D_{0}Z$$

$$k = -\frac{D_{0}Z}{-b0} = \frac{D_{0}Z}{60}$$
So $k = \frac{D_{0}Z}{60}$ and $Q(t) = Q_{0} e^{-\frac{D_{0}Z}{60}t}$

October 15, 2018 10 / 35

・ロト・西ト・ヨト・ヨー うへの

Sections 6.1 & 6.2: Trigonometric Functions of Acute Angles

In this section, we are going to define six new functions called **trigonometric functions**. We begin with an acute angle θ in a right triangle with the sides whose lengths are labeled:

Sine, Cosine, and Tangent

For the acute angle θ , we define the three numbers as follows

$$\sin \theta = \frac{\text{opp}}{\text{hyp}},$$
 read as "sine theta"
 $\cos \theta = \frac{\text{adj}}{\text{hyp}},$ read as "cosine theta"
 $\tan \theta = \frac{\text{opp}}{\text{adj}},$ read as "tangent theta"

Note that these are numbers, ratios of side lengths, and have no units.

It may be convenient to enclose the argument of a trig function in parentheses. That is,

 $\sin \theta = \sin(\theta).$

October 15, 2018

16/35

Cosecant, Secant, and Cotangent

The remaining three trigonometric functions are the reciprocals of the first three

$$\csc \theta = \frac{\text{hyp}}{\text{opp}} = \frac{1}{\sin \theta}$$
, read as "cosecant theta"
 $\sec \theta = \frac{\text{hyp}}{\text{adj}} = \frac{1}{\cos \theta}$, read as "secant theta"
 $\cot \theta = \frac{\text{adj}}{\text{opp}} = \frac{1}{\tan \theta}$, read as "cotangent theta"

э

イロト イポト イヨト イヨト

A Word on Notation

The trigonometric ratios define functions:

input angle number \rightarrow output ratio number.

From the definitions, we see that

$$\csc\theta = \frac{1}{\sin\theta}.$$

Functions have arguments. It is NOT acceptable to write the above relationship as

$$\csc = \frac{1}{\sin}.$$

October 15, 2018

18/35