October 17 MATH 1113 sec. 52 Fall 2018

Section 5.5: Solving Exponential and Logarithmic Equations

Base-Exponent Equality For any $a>0$ with $a \neq 1$, and for any real numbers x and y

$$
a^{x}=a^{y} \quad \text { if and only if } x=y .
$$

Logarithm Equality For and $a>0$ with $a \neq 1$, and for any positive numbers x and y

$$
\log _{a} x=\log _{a} y \text { if and only if } x=y .
$$

Inverse Function For any $a>0$ with $a \neq 1$

$$
\begin{gathered}
a^{\log _{a} x}=x \quad \text { for every } \quad x>0 \\
\log _{a}\left(a^{x}\right)=x \quad \text { for every real } x .
\end{gathered}
$$

Log Equations \& Verifying Answers
Double checking answers is always recommended. When dealing with functions whose domains are restricted, answer verification is critical.

Use properties of logarithms to solve the equation

$$
\begin{aligned}
& 2 \log _{5}(x)=\log _{5}(x+10)+1 \\
& \log _{5}\left(x^{2}\right)=\log _{5}(x+10)+\log _{5}(5) \\
& \log _{5}\left(x^{2}\right)=\log _{5}(5(x+10)) \\
& x^{2}=5(x+10) \\
& x^{2}-5 x-50=0 \Rightarrow(x-10)(x+5)=0 \\
& x=10 \text { or } x=-5
\end{aligned}
$$

Both solve the quadratic equation. well check to see
if they solve the \log equation

$$
2 \log _{s}(x)=\log _{5}(x+10)+1=\log _{s}(x+10)+\log _{5}(5)
$$

Check 10: LHS $2 \log _{s}(10)=\log _{5}\left(10^{2}\right)=\log _{5}(100)$

$$
\begin{aligned}
\text { RHS } \log _{s}(10+10) & +\log _{s}(s)=\log _{s}(20)+\log _{s}(5) \\
& =\log _{s}(20 \cdot 5) \\
& =\log _{s}(100)
\end{aligned}
$$

10 is a solution.
Check-s: LHS $2 \log _{s}(-5)$ undefined
-S is not a solution
There is one solution, 10 .

Question

Solve the equation $\log _{6} x+\log _{6}(x-1)=1$. (Hint: $\log _{6} 6=1$.)
(a) $x=3$ or $x=-2$

$$
\log _{6}(x(x-1))=\log _{6} 6
$$

(b) $x=2$ or $x=-3$

$$
\begin{aligned}
& x(x-1)=6 \\
& x^{2}-x-6=0
\end{aligned}
$$

(c) $x=3$
(d) $x=2$
(e) $x=0$ or $x=1$

Combining Skills
Find all solutions of the equation ${ }^{1}$

$$
\frac{e^{x}+e^{-x}}{2}=2
$$

$$
\begin{aligned}
& e^{x}+e^{-x}=4 \quad \text { well nubtipl, bs } e^{x} \\
& e^{x}\left(e^{x}+e^{-x}\right)=4 e^{x} \\
& \left(e^{x}\right)^{2}+e^{-x} e^{x}=4 e^{x} \quad e^{-x} e^{x}=e^{0}=1 \\
& \left(e^{x}\right)^{2}+1=4 e^{x} \Rightarrow \quad\left(e^{x}\right)^{2}-4 e^{x}+1=0
\end{aligned}
$$

${ }^{1}$ The function $f(x)=\frac{e^{x}+e^{-x}}{2}$ is a well known function called the hyperbolic cosine. a

Letting $u=e^{x}$, we have c quodratiz equation $u^{2}-4 u+1=0$ Let's complete the square

$$
\begin{aligned}
u^{2}-4 u+4-4 & +1=0 \\
(u-2)^{2}-3 & =0 \\
(u-2)^{2} & =3 \\
u-2 & = \pm \sqrt{3} \Rightarrow u=2 \pm \sqrt{3}
\end{aligned}
$$

There are two possible solutions

$$
e^{x}=2+\sqrt{3} \quad \text { or } \quad e^{x}=2-\sqrt{3}
$$

Both are positive, so both are valid.

The two solutions come from

$$
\begin{aligned}
\ln \left(e^{x}\right) & =\ln (2+\sqrt{3}) & \text { and } & \ln \left(e^{x}\right)=\ln (2-\sqrt{3}) \\
x & =\ln (2+\sqrt{3}) & x & =\ln (2-\sqrt{3})
\end{aligned}
$$

Applications

When a quantity Q changes in time according to the model $Q(t)=Q_{0} e^{k t}$, it is said to experience exponential growth ($k>0$) or exponential decay $(k<0)$. Here, Q_{0} is the constant initial quantity $Q(0)$, and k is a constant. Examples of such phenomena include

- population changes (over small time frame),
- continuously compounded interest (on deposit or loan amount),
- substances subject to radio active decay

Generally, the model for exponential decay is written $Q(t)=Q_{0} e^{-k t}$, and for growth it is written as $Q(t)=Q_{0} e^{k t}$ so that it is always assumed that $k>0$.

Example
The ${ }^{44} \mathrm{Ti}$ titanium isotope decays to ${ }^{44} \mathrm{Ca}$, a stable calcium isotope. The mass Q is subject to exponential decay

$$
Q(t)=Q_{0} e^{-k t} \text { for } t \text { in years, and some } k>0
$$

If the half life (amount of time for the mass to reduce by 50%) is 60 years, determine the value of k.
were given that $Q(60)=\frac{1}{2} Q(0)$

$$
\begin{aligned}
& Q(0)=Q_{0} e^{-k \cdot 0}=Q_{0} \cdot 1=Q_{0} \\
& Q(60)=Q_{0} e^{-k \cdot 60}=Q_{0} e^{-60 k}
\end{aligned}
$$

Setting $Q(60)$ equal to $\frac{1}{2} Q(0)$

$$
Q(60)=\frac{1}{2} Q(0)
$$

$$
Q_{0} e^{-60 k}=\frac{1}{2} Q_{0}
$$

Divide by Q_{0}, solve for k.

$$
e^{-60 k}=\frac{1}{2}
$$

Take the ratuad log

$$
\begin{aligned}
& \log \left(e^{-60 k}\right)=\ln \left(\frac{1}{2}\right)=\ln \left(z^{-1}\right) \\
& -60 k=-\ln 2 \\
& k=\frac{-\ln 2}{-60}=\frac{\ln 2}{60}
\end{aligned}
$$

So $k=\frac{\rho_{2} 2}{60}$ and $Q(t)=Q_{0} e^{-\frac{\ln 2}{60} t}$

Sections 6.1 \& 6.2: Trigonometric Functions of Acute Angles

In this section, we are going to define six new functions called trigonometric functions. We begin with an acute angle θ in a right triangle with the sides whose lengths are labeled:

Sine, Cosine, and Tangent

For the acute angle θ, we define the three numbers as follows

$$
\begin{aligned}
\sin \theta=\frac{\text { opp }}{\text { hyp }}, & \text { read as "sine theta" } \\
\cos \theta=\frac{\text { adj }}{\text { hyp }}, & \text { read as "cosine theta" } \\
\tan \theta=\frac{\text { opp }}{\text { adj }}, & \text { read as "tangent theta" }
\end{aligned}
$$

Note that these are numbers, ratios of side lengths, and have no units.
It may be convenient to enclose the argument of a trig function in parentheses. That is,

$$
\sin \theta=\sin (\theta)
$$

Cosecant, Secant, and Cotangent

The remaining three trigonometric functions are the reciprocals of the first three

$$
\begin{aligned}
& \csc \theta=\frac{\text { hyp }}{\text { opp }}=\frac{1}{\sin \theta}, \quad \text { read as "cosecant theta" } \\
& \sec \theta=\frac{\text { hyp }}{\text { adj }}=\frac{1}{\cos \theta}, \quad \text { read as "secant theta" } \\
& \cot \theta=\frac{\text { adj }}{\text { opp }}=\frac{1}{\tan \theta}, \quad \text { read as "cotangent theta" }
\end{aligned}
$$

A Word on Notation

The trigonometric ratios define functions:
input angle number \rightarrow output ratio number.
From the definitions, we see that

$$
\csc \theta=\frac{1}{\sin \theta}
$$

Functions have arguments. It is NOT acceptable to write the above relationship as

$$
\csc =\frac{1}{\sin }
$$

