Oct. 17 Math 1190 sec. 52 Fall 2016

Section 4.2: Maximum and Minimum Values; Critical Numbers
Definition: A critical number of a function f is a number c in its domain such that either

$$
f^{\prime}(c)=0 \quad \text { or } \quad f^{\prime}(c) \text { does not exist. }
$$

Theorem:If f has a local extremum at c, then c is a critical number of f.

Some authors call critical numbers critical points.

Example
Find all of the critical numbers of the function.
(a) $f(x)=x^{4}-2 x^{2}+5 \quad$ Note the domain is $(-\infty, \infty)$.

$$
f^{\prime}(x)=4 x^{3}-4 x=4 x\left(x^{2}-1\right)=4 x(x-1)(x+1) .
$$

When is $f^{\prime}(x)=0$? $\quad 4 x(x-1)(x+1)=0$

$$
\begin{aligned}
& \Rightarrow \quad 4 x=0 \text { or } x-1=0 \text { or } x+1=0 \\
& \Rightarrow \quad x=0 \text { or } x=1 \quad \text { or } x=-1
\end{aligned}
$$

when is $f^{\prime}(x)$ undefined? Nowhere $f^{\prime}(x)$ is defined at dell red numbers.
f hes 3 critic numbers, 0,1 , and -1 .
we could say the set of critical numbers is $\{0,1,-1\}$.

Example
Find all critical numbers of the function
(b) $g(t)=t^{1 / 5}(12-t) \quad$ The domain is $(-\infty, \infty)$.

$$
\begin{aligned}
& g(t)=12 t^{1 / 5}-t^{6 / 5} \\
& g^{\prime}(t)=12\left(\frac{1}{5} t^{\frac{1}{5}-1}\right)-\frac{6}{5} t^{\frac{6}{5}-1} \\
&=\frac{12}{5} t^{-4 / 5}-\frac{6}{5} t^{1 / 5} \\
&=\frac{12}{5 t^{4 / 5}}-\frac{6 t^{1 / 5}}{5} \frac{t^{4 / 5}}{t^{4 / 5}} \\
&=\frac{12}{5 t^{4 / 5}}-\frac{6 t}{5 t^{4 / 5}}=\frac{12-6 t}{5 t^{4 / 5}}
\end{aligned}
$$

$$
g^{\prime}(t)=\frac{12-6 t}{5 t^{4 / 5}}
$$

When is $g^{\prime}(t)=0$? when $12-6 t=0 \Rightarrow 12=6 t$

$$
\Rightarrow \quad t=2
$$

when is $g^{\prime}(t)$ undefined? when $5 t^{4 / s}=0 \Rightarrow t=0$.
The critical numbers of g are 2 and 0 . In set notation $\{0,2\}$.

Question
Find all critical numbers of the function h. Note that the domain of h is $(-\infty, 0) \cup(0, \infty)$.

$$
h(x)=x+\frac{1}{x}=x+x^{-1}
$$

$$
h^{\prime}(x)=\frac{x^{2}-1}{x^{2}} \quad h^{\prime}(x)=1+(-1) x^{-2} .
$$

(a) $\{1,-1,0\}$

$$
h^{\prime}(x)=0 \Rightarrow x^{2}-1=0 \Rightarrow x^{2}=1 \Rightarrow x= \pm 1
$$

(b) $\{1\}$
(C) $\{1,-1\}$
$h^{\prime}(x)$ is undefined if $x=0$, but zeno
(d) $\{-1\}$

Extreme Value Theorem

Suppose f is continuous on a closed interval $[a, b]$. Then f attains an absolute maximum value $f(c)$ and f attains an absolute minimum value $f(d)$ for some numbers c and d in $[a, b]$.

Recall that this says that if (1) f is continuous, and (2) the interval is closed, we're guaranteed to have f actually have an absolute maximum and an absolute minimum on the interval.

In practice, we look for these by considering critical points inside the interval and considering the endpoints.

Example
Find the absolute maximum and absolute minimum values of the function on the closed interval.
(a) $\quad g(t)=t^{1 / 5}(12-t), \quad$ on $\quad[-1,1]$
g is continuous on $(-\infty, \infty)$, so it's continuous on the closed interval $[-1,1]$. We found that g has two criticd numbers, 0 and 2 . Only 320 is inside $[-1,1]$. Well compare the function values at the critical numbers in $(-1,1)$ and at the end points.

$$
\begin{aligned}
& g(t)=t^{1 / 5}(12-t) \\
& a^{2} p^{0 n^{n}} \\
& y g(-1)=(-1)^{1 / s}(12-(-1))=-1 \cdot 13=-13 \\
& \pi_{\text {smollest }} \\
& \text { cose } g(0)=0^{1 / s}(12-0)=0 \\
& g(1)=1^{1 / 3}(12-1)=1 \cdot 11=11 \quad t^{\text {bisgest }}
\end{aligned}
$$

The absolate minimum value is $-13=g(-1)$. The absolute moximun value is $\|=g(1)$.
(b) $f(x)=x e^{x}$, on $[-3,1]$
f is continual on $(-\infty, \infty)$, hence on the closed interval $[-3,1]$. Let's find critical numbers.

$$
f^{\prime}(x)=1 \cdot e^{x}+x e^{x}=e^{x}(1+x)
$$

When is $f^{\prime}(x)=0$? $e^{x}(1+x)=0 \Rightarrow e^{x}=0$ or $1+x=0$
$e^{x}>0$ s. no solutions then

$$
1+x=0 \Rightarrow x=-1
$$

when is $f^{\prime}(x)$ undefined? Never
f has ore critical number -1 , and it's in the interval $[-3,1]$.
Compare f at the ends and critice numbers.

$$
\begin{aligned}
& f(-3)=-3 e^{-3}=\frac{-3}{e^{3}} \\
& f(-1)=-1 e^{-1}=\frac{-1}{e} \\
& f(1)=1 \cdot e^{1}=e \quad k_{\text {doviousts the }} \text { biggest }
\end{aligned}
$$

Note $3<e^{2} \Rightarrow-3>-e^{2}$

$$
\Rightarrow \quad \frac{-3}{e^{3}}>\frac{-e^{2}}{e^{3}}=\frac{-1}{e}
$$

S. $\frac{-1}{e}$ is the smallest number in our list.

Thees out $\frac{-3}{e^{3}} \approx-0.1494$ and $\frac{-1}{e} \approx-0.3679$

The absolute maximum value is $f(D)=e$, and the absolute minimum is $\frac{-1}{e}=f(-1)$.

Question

Find the absolute maximum and absolute minimum values of the function on the closed interval.

$$
\text { Crit \#'s } 3,-3
$$

$f(x)=1+27 x-x^{3}, \quad$ on $[0,4]$

$$
f^{\prime}(x)=27-3 x^{2}=3\left(9-x^{2}\right)
$$

(a)) Minimum value is 1 , maximum value is 55
(b) Minimum value is 1 , maximum value is 35

$$
\begin{aligned}
& f(0)=1 \\
& f(3)=s s
\end{aligned}
$$

$$
f(4)=45
$$

(c) Minimum value is -53 , maximum value is 55
(d) Minimum value is -53 , maximum value is 35

Section 4.3: The Mean Value Theorem

Rolle's Theorem: Let f be a function that is
i continuous on the closed interval $[a, b]$,
ii differentiable on the open interval (a, b), and
iii such that $f(a)=f(b)$.
Then there exists a number c in (a, b) such that $f^{\prime}(c)=0$.

The Mean Value Theorem (MVT) is arguably the most significant theorem in calculus. This is even accounting for a theorem we'll discuss later called the Fundamental Theorem of Calculus.

Example
Show that the function $f(\theta)=\cos \theta+\sin \theta$ has at least one point c in $\left[0, \frac{\pi}{2}\right]$ such that $f^{\prime}(c)=0$.
Note: (i) f is continuous on $(-\infty, \infty)$, hence on $\left[0, \frac{\pi}{2}\right]$.
(ii) fir differentiable on $(-\infty, \infty)$, hence on $\left(0, \frac{\pi}{2}\right)$.
(iii)

$$
\left.\begin{array}{l}
f(0)=\cos 0+\sin 0=1+0=1 \\
f\left(\frac{\pi}{2}\right)=\cos \frac{\pi}{2}+\sin \frac{\pi}{2}=0+1=1
\end{array}\right\} f(a)=f(b)
$$

By Roller the, there must be a number c in (0, $\frac{\pi}{2}$) such that $f^{\prime}(c)=0$.

Plot:

Figure

