October 17 Math 2306 sec. 57 Fall 2017

Section 11: Linear Mechanical Equations

Simple Harmonic Motion: In the absence of any damping or external driving force, we determined the displacement x from equilibrium of an object suspended from a spring according to Hooke's law:

$$
\begin{equation*}
x^{\prime \prime}+\omega^{2} x=0, \quad x(0)=x_{0}, \quad x^{\prime}(0)=x_{1} \tag{1}
\end{equation*}
$$

Here, x_{0} and x_{1} are the initial position (relative to equilibrium) and velocity, respectively. The value

$$
\omega^{2}=\frac{k}{m}
$$

where k is the spring constant and m the mass of the suspended object.

The equation of motion

The solution to the IVP $x^{\prime \prime}+\omega^{2} x=0, \quad x(0)=x_{0}, \quad x^{\prime}(0)=x_{1}$ is

$$
x(t)=x_{0} \cos (\omega t)+\frac{x_{1}}{\omega} \sin (\omega t)
$$

called the equation of motion.

We took the sign convention that the direction up is positive $(x>0)$ and down is negative $(x<0)$.

$$
\begin{aligned}
\text { Terms: From Equilibrium: means } x(0) & =0 \\
\text { From Rest: means } x^{\prime}(0) & =0
\end{aligned}
$$

Free Damped Motion

fluid resists motion

$$
\mathrm{F}_{\mathrm{damping}}=\beta \frac{d x}{d t}
$$

$\beta>0$ (by conservation of energy)

Figure: If a damping force is added, we'll assume that this force is proportional to the instantaneous velocity.

Free Damped Motion

Now we wish to consider an added force corresponding to damping-friction, a dashpot, air resistance.

Total Force $=$ Force of spring + Force of damping

$$
m \frac{d^{2} x}{d t^{2}}=-\beta \frac{d x}{d t}-k x \quad \Longrightarrow \quad \frac{d^{2} x}{d t^{2}}+2 \lambda \frac{d x}{d t}+\omega^{2} x=0
$$

where

$$
2 \lambda=\frac{\beta}{m} \quad \text { and } \quad \omega=\sqrt{\frac{k}{m}} .
$$

Three qualitatively different solutions can occur depending on the nature of the roots of the characteristic equation

$$
r^{2}+2 \lambda r+\omega^{2}=0 \quad \text { with roots } \quad r_{1,2}=-\lambda \pm \sqrt{\lambda^{2}-\omega^{2}}
$$

Case 1: $\lambda^{2}>\omega^{2}$ Overdamped

$$
x(t)=e^{-\lambda t}\left(c_{1} e^{t \sqrt{\lambda^{2}-\omega^{2}}}+c_{2} e^{-t \sqrt{\lambda^{2}-\omega^{2}}}\right)
$$

Figure: Two distinct real roots. No oscillations. Approach to equilibrium may be slow.

Case 2: $\lambda^{2}=\omega^{2}$ Critically Damped

$$
x(t)=e^{-\lambda t}\left(c_{1}+c_{2} t\right)
$$

Figure: One real root. No oscillations. Fastest approach to equilibrium.

Case 3: $\lambda^{2}<\omega^{2}$ Underdamped

$$
x(t)=e^{-\lambda t}\left(c_{1} \cos \left(\omega_{1} t\right)+c_{2} \sin \left(\omega_{1} t\right)\right), \quad \omega_{1}=\sqrt{\omega^{2}-\lambda^{2}}
$$

Figure: Complex conjugate roots. Oscillations occur as the system approaches (resting) equilibrium.

Comparison of Damping

Figure: Comparison of motion for the three damping types.

Example
A 2 kg mass is attached to a spring whose spring constant is $12 \mathrm{~N} / \mathrm{m}$. The surrounding medium offers a damping force numerically equal to 10 times the instantaneous velocity. Write the differential equation describing this system. Determine if the motion is underdamped, overdamped or critically damped.

The form of the ODE is $m x^{\prime \prime}+\beta x^{\prime}+k x=0$
mass $m=2$, spring corrstent $k=12$
damping coefficient $\beta=10$. The $O D \bar{x}$ is

$$
2 x^{\prime \prime}+10 x^{\prime}+12 x=0
$$

Stander d

$$
x^{\prime \prime}+5 x^{\prime}+6 x=0
$$

Cherac. Eqn

$$
\begin{aligned}
& r^{2}+5 r+6=0 \\
& (r+2)(r+3)=0 \Rightarrow r=-2 \text { or } r=-3
\end{aligned}
$$

2 distinct red roots.
The systen is ove domped.

Here $2 \lambda=5$ and $\omega^{2}=6$

$$
\lambda^{2}-\omega^{2}=\left(\frac{5}{2}\right)^{2}-6=\frac{25}{4}-\frac{24}{4}=\frac{1}{4}>0
$$

if. $\lambda^{2}>\omega^{2}$ so asait, the syster is overdemped.

Example
A 3 kg mass is attached to a spring whose spring constant is $12 \mathrm{~N} / \mathrm{m}$. The surrounding medium offers a damping force numerically equal to 12 times the instantaneous velocity. Write the differential equation describing this system. Determine if the motion is underdamped, overdamped or critically damped. If the mass is released from the equilibrium position with an upward velocity of $1 \mathrm{~m} / \mathrm{sec}$, solve the resulting initial value problem.

$$
\begin{aligned}
& m x^{\prime \prime}+\beta x^{\prime}+k x=0 \quad m=3, \quad h=12, \quad \beta=12 \\
& \qquad 3 x^{\prime \prime}+12 x^{\prime}+12 x=0 \\
& \text { Standard } \quad x^{\prime \prime}+4 x^{\prime}+4 x=0 \\
& \text { fore } \\
& \text { Char. Eqn } r^{2}+4 r+4=0 \Rightarrow(r+2)^{2}=0 \\
& r=-2 \text { repeated. }
\end{aligned}
$$

One red root: The system is critically domped.

From the cheracteviric equation

$$
x_{1}=e^{-2 t}, \quad x_{2}=t e^{-2 t}
$$

with serencl solution

$$
x=c_{1} e^{-2 t}+c_{2} t e^{-2 t}
$$

Were given $x(0)=0 \quad x^{\prime}(0)=1 \begin{gathered}\text { (upward } \\ \text { positive })\end{gathered}$

$$
x^{\prime}(t)=-2 c_{1} e^{-2 t}+c_{2} e^{-2 t}-2 c_{2} t e^{-2 t}
$$

$$
\begin{gathered}
x(0)=c_{1} e^{0}+c_{2} \cdot 0 \cdot e^{0}=0 \Rightarrow c_{1}=0 \\
x^{\prime}(0)=-2 c_{1} e^{0}+c_{2} e^{0}-2 c_{2} \cdot 0 e^{0}=1 \\
c_{2}=1
\end{gathered}
$$

The equation of motion (solution to the IVP) is

$$
x=t e^{-2 t}
$$

Driven Motion

We can consider the application of an external driving force (with or without damping). Assume a time dependent force $f(t)$ is applied to the system. The ODE governing displacement becomes

$$
m \frac{d^{2} x}{d t^{2}}=-\beta \frac{d x}{d t}-k x+f(t), \quad \beta \geq 0
$$

Divide out m and let $F(t)=f(t) / m$ to obtain the nonhomogeneous equation

$$
\frac{d^{2} x}{d t^{2}}+2 \lambda \frac{d x}{d t}+\omega^{2} x=F(t)
$$

$2^{\text {nd }}$ oren, linear, constant coefficient, nonhomogeneous OPE. Get x_{c} from the characteristic Eqn. Get x_{p} from Undetermined coefficients or Variation of parameters.

Forced Undamped Motion and Resonance

Consider the case $F(t)=F_{0} \cos (\gamma t)$ or $F(t)=F_{0} \sin (\gamma t)$, and $\lambda=0$. Two cases arise
(1) $\gamma \neq \omega, \quad$ and (2) $\gamma=\omega$.

Taking the sine case, the DE is

$$
x^{\prime \prime}+\omega^{2} x=F_{0} \sin (\gamma t)
$$

with complementary solution

$$
x_{c}=c_{1} \cos (\omega t)+c_{2} \sin (\omega t) .
$$

$$
x^{\prime \prime}+\omega^{2} x=F_{0} \sin (\gamma t)
$$

Note that

$$
x_{c}=c_{1} \cos (\omega t)+c_{2} \sin (\omega t) .
$$

Using the method of undetermined coefficients, the first guess to the particular solution is
$x_{p}=A \cos (\gamma t)+B \sin (\gamma t)$ If $\gamma \neq \omega$, this form works.
The senend solution will be a sum of sines/cosines of ωt and Sines / cosines of γt.

$$
x^{\prime \prime}+\omega^{2} x=F_{0} \sin (\gamma t)
$$

Note that

$$
x_{c}=c_{1} \cos (\omega t)+c_{2} \sin (\omega t) .
$$

Using the method of undetermined coefficients, the first guess to the particular solution is
$x_{p}=A \cos (\gamma t)+B \sin (\gamma t)$ If $\gamma=\omega$, this guess world have to be moditiod as it motiles x_{c}. The correct form of X_{p} would be

$$
x_{p}=A t \cos (\gamma t)+B t \sin (\gamma t) .
$$

The amplitude con grow with out bound.

Forced Undamped Motion and Resonance

For $F(t)=F_{0} \sin (\gamma t)$ starting from rest at equilibrium:

Case (1): $\quad x^{\prime \prime}+\omega^{2} x=F_{0} \sin (\gamma t), \quad x(0)=0, \quad x^{\prime}(0)=0$

$$
x(t)=\frac{F_{0}}{\omega^{2}-\gamma^{2}}\left(\sin (\gamma t)-\frac{\gamma}{\omega} \sin (\omega t)\right)
$$

If $\gamma \approx \omega$, the amplitude of motion could be rather large!

Pure Resonance notive fequency $\omega=$ resononce frequency
Case (2): $\quad x^{\prime \prime}+\omega^{2} x=F_{0} \sin (\omega t), \quad x(0)=0, \quad x^{\prime}(0)=0$

$$
x(t)=\frac{F_{0}}{2 \omega^{2}} \sin (\omega t)-\frac{F_{0}}{2 \omega} t \cos (\omega t)
$$

Note that the amplitude, α, of the second term is a function of t :

$$
\alpha(t)=\frac{F_{0} t}{2 \omega}
$$

which grows without bound!

Choose "Elongation diagram" to see a plot of displacement. Try exciter frequencies close to ω.

Section 12: LRC Series Circuits

Potential Drops Across Components:

Figure: Kirchhoff's Law: The charge q on the capacitor satisfies $L q^{\prime \prime}+R q^{\prime}+\frac{1}{C} q=E(t)$. 2ndorden, linear, constant coefficient, nonhonogeneon (if $E \neq 0$) ODE

LRC Series Circuit (Free Electrical Vibrations)

$$
L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{1}{C} q=0
$$

If the applied force $E(t)=0$, then the electrical vibrations of the circuit are said to be free. These are categorized as

$$
\begin{array}{ll}
\text { overdamped if } & R^{2}-4 L / C>0, \\
\text { critically damped if } & R^{2}-4 L / C=0, \\
\text { underdamped if } & R^{2}-4 L / C<0 .
\end{array}
$$

Steady and Transient States

Given a nonzero applied voltage $E(t)$, we obtain an IVP with nonhomogeneous ODE for the charge q

$$
L q^{\prime \prime}+R q^{\prime}+\frac{1}{C} q=E(t), \quad q(0)=q_{0}, \quad q^{\prime}(0)=i_{0}
$$

From our basic theory of linear equations we know that the solution will take the form

$$
q(t)=q_{c}(t)+q_{p}(t)
$$

The function of q_{c} is influenced by the initial state (q_{0} and i_{0}) and will decay exponentially as $t \rightarrow \infty$. Hence q_{c} is called the transient state charge of the system.

Steady and Transient States

Given a nonzero applied voltage $E(t)$, we obtain an IVP with nonhomogeneous ODE for the charge q

$$
L q^{\prime \prime}+R q^{\prime}+\frac{1}{C} q=E(t), \quad q(0)=q_{0}, \quad q^{\prime}(0)=i_{0} .
$$

From our basic theory of linear equations we know that the solution will take the form

$$
q(t)=q_{c}(t)+q_{p}(t) .
$$

The function q_{p} is independent of the initial state but depends on the characteristics of the circuit (L, R, and C) and the applied voltage E. q_{p} is called the steady state charge of the system.

Example
An LRC series circuit has inductance 0.5 h , resistance 10 ohms, and capacitance $4 \cdot 10^{-3} \mathrm{f}$. Find the steady state current of the system if the applied force is $E(t)=5 \cos (10 t)$.

$$
\begin{aligned}
& L q^{\prime \prime}+R q^{\prime}+\frac{1}{C} q=E \quad L=\frac{1}{2}, \quad R=10, C=4 \cdot 10^{3} \\
& E=5 \cos (10 t) \quad \frac{1}{2} q^{\prime \prime}+10 q^{\prime}+\frac{1}{4 \cdot 10^{-3}} q=5 \cos (10 t)
\end{aligned}
$$

Note $2 \cdot \frac{1}{4 \cdot 10^{-3}}=\frac{2 \cdot 10^{3}}{4}=\frac{10^{3}}{2}=\frac{1000}{2}=500$
Standard fin: $q^{\prime \prime}+20 q^{\prime}+500 q=10 \cos (10 t)$
Char au eph $\quad r^{2}+20 r+500=0$

$$
\begin{aligned}
& r^{2}+20 r+100+400=0 \\
&(r+10)^{2}=-400 \Rightarrow r+10= \pm 20 i \\
& r=-10 \pm 20 i \quad \alpha=-10, \beta=20 \\
& q_{1}=e^{-10 t} \cos (20 t), \quad q_{2}=e^{-10 t} \sin (20 t) \\
& q_{c}=c_{1} e^{-10 t} \cos (20 t)+c_{1} e^{-10 t} \sin (20 t)
\end{aligned}
$$

Using undethmined wefficieuts, guess

$$
\begin{aligned}
& q_{p}=A \operatorname{Cos}(10 t)+B \sin (10 t) \quad \text { will work } \\
& q_{p}^{\prime}=-10 A \sin (10 t)+103 \cos (10 t)
\end{aligned}
$$

$$
\begin{aligned}
& q_{p}^{\prime \prime}=-100 A C \cos (10 t)-100 B \sin (10 t) \\
& q_{p}^{\prime \prime}+20 q_{p}^{\prime}+500 q_{p}= \\
& -100 A \cos (10 t)-100 B \sin (10 t)-200 A \sin (10 t)+200 B \cos (10 t) \\
& +500 A \cos (10 t)+500 B \sin (10 t)=10 \cos (10 t) \\
& \cos (10 t)(-100 A+200 B+500 A)+\sin (10 t)(-100 B-200 A+500 B) \\
& =
\end{aligned}
$$

$$
\begin{aligned}
400 A+200 B= & 10 \\
-200 A+400 B= & 0 \Rightarrow A=2 B \\
400(2 B)+ & 200 B=10 \\
& 1000 B=10 \Rightarrow B=\frac{10}{1000}=0.01 \\
\text { So } A=2 B= & 0.02 .
\end{aligned}
$$

The steady state Charge is

$$
q_{p}=0.02 \operatorname{cor}(10 t)+0.01 \sin (10 t)
$$

The steady state current $i_{p}=\frac{d q_{p}}{d t}$ is

$$
i_{p}=-0.2 \sin (10 t)+0.1 \cos (10 t) \ldots
$$

