October 12 Math 3260 sec. 57 Fall 2017

Section 6.1: Inner Product, Length, and Orthogonality

Recall that we defined the inner product in R”: Definition: For vectors
u and v in R"” we define the inner product of u and v (also called the

dot product) by the matrix product

Vi

Vo
u'v=(uy U | | = v+ UaVo -+ UpVa

Vn

We noted that this product has several properties.
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Theorem (Properties of the Inner Product)

T

We'll use the notation u-v = u'v.

Theorem: For u, v and w in R” and real scalar ¢
(@ u-v=v-u

(b) (U+Vv)-w=u-w+v-w
(c) c(u-v)=(cu)-v=u-(cv)

(d) u-u>0,withu-u=0ifandonlyifu=0.
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The Norm and Orthogonality

Definition: The norm of the vector v in R” is the nonnegative number

denoted and defined by

HVH:\/ﬁ: V52+V22+'--+V,%

where vy, vo, ..., v, are the components of v.

If v is any nonzero vector, the vector v/||v|| is a unit vector in the
direction of v.

Definition: Two vectors are u and v orthogonal if u - v = 0.

In R", orthogonality corresponds geometrically with begin
perpendicular.
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Orthogonal Complement
Definition: Let W be a subspace of R”. A vector z in R" is said to be
orthogonal to W if z is orthogonal to every vector in W.

2—".5 or)«\f\obo-\a’x AW \P

2.0 =0 every W A \0\}

Definition: Given a subspace W of R”, the set of all vectors
orthogonal to W is called the orthogonal complement of W and is
denoted by

w-+.
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Theorem:
W+ is a subspace of R”.
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Example

1 0 0
Let WSpan{ { 0 ] , { 0 ] } Show that W+ Span{ { 1 }
0 1 0

Give a geometric interpretation of W and W+ as subspaces of R3.
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Example

Let A= [ o g : ] Show that if x is in NuI(A), then X is in

Row(A)]*. >
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Theorem

Theorem: Let Abe an m x n matrix. The orthogonal complement of
the row space of A is the null space of A. That is

[Row(A)]* = Nul(A).
The orthongal complement of the column space of A is the null space

of AT—i.e.
[Col(A)]* = Nul(AT).
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Example: Find the orthogonal complement of Col(A)
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Section 6.2: Orthogonal Sets

Remark: We know that if B = {by,..., by} is a basis for a subspace
W of R", then each vector x in W can be realized (uniquely) as a sum

X = cibs + - - + cpbp.

If nis very large, the computations needed to determine the
coefficients ¢y, ..., ¢, may require a lot of time (and machine memory).

Question: Can we seek a basis whose nature simplifies this task?
And what properties should such a basis possess?
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Orthogonal Sets
Definition: An indexed set {uy,...,up} in R" is said to be an

orthogonal set provided each pair of distinct vectors in the set is
orthogonal. That is, provided

u;-u;=0 whenever i#].

Example: Show that the set { {
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Orthongal Basis

Definition: An orthogonal basis for a subspace W of R" is a basis
that is also an orthogonal set.

Theorem: Let {uy,...,up} be an orthogonal basis for a subspace W
of R". Then each vector y in W can be written as the linear
combination

Yy = CiUy + CoUz + - - - + CpUp, Where the weights

_yy

ci = .
1 Ty
u; - u;
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Example

3 —1 —1
10,1 2 |,| —4 is an orthogonal basis of R3. Express
1 7
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thevectory= | 3 | as alinear combination of the basis vectors.
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Projection

Given a nonzero vector u, suppose we wish to decompose another
nonzero vector y into a sum of the form

y=y+z
in such a way that y is parallel to u and z is perpendicular to u.
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Projection
Since y is parallel to u, there is a scalar « such that

y = au.
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