October 12 Math 3260 sec. 57 Fall 2017

Section 6.1: Inner Product, Length, and Orthogonality

Recall that we defined the inner product in \mathbb{R}^{n} : Definition: For vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{n} we define the inner product of \mathbf{u} and \mathbf{v} (also called the dot product) by the matrix product

$$
\mathbf{u}^{T} \mathbf{v}=\left[\begin{array}{llll}
u_{1} u_{2} \cdots u_{n}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}
$$

We noted that this product has several properties.

Theorem (Properties of the Inner Product)

$$
\text { We'll use the notation } \quad \mathbf{u} \cdot \mathbf{v}=\mathbf{u}^{\top} \mathbf{v} \text {. }
$$

Theorem: For \mathbf{u}, \mathbf{v} and \mathbf{w} in \mathbb{R}^{n} and real scalar c
(a) $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
(b) $(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{w}$
(c) $c(\mathbf{u} \cdot \mathbf{v})=(c \mathbf{u}) \cdot \mathbf{v}=\mathbf{u} \cdot(c \mathbf{v})$
(d) $\mathbf{u} \cdot \mathbf{u} \geq 0$, with $\mathbf{u} \cdot \mathbf{u}=0$ if and only if $\mathbf{u}=\mathbf{0}$.

The Norm and Orthogonality

Definition: The norm of the vector \mathbf{v} in \mathbb{R}^{n} is the nonnegative number denoted and defined by

$$
\|\mathbf{v}\|=\sqrt{\mathbf{v} \cdot \mathbf{v}}=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}
$$

where $v_{1}, v_{2}, \ldots, v_{n}$ are the components of \mathbf{v}.
If \mathbf{v} is any nonzero vector, the vector $\mathbf{v} /\|\mathbf{v}\|$ is a unit vector in the direction of \mathbf{v}.

Definition: Two vectors are \mathbf{u} and \mathbf{v} orthogonal if $\mathbf{u} \cdot \mathbf{v}=0$.
In \mathbb{R}^{n}, orthogonality corresponds geometrically with begin perpendicular.

Orthogonal Complement

Definition: Let W be a subspace of \mathbb{R}^{n}. A vector \mathbf{z} in \mathbb{R}^{n} is said to be orthogonal to W if \mathbf{z} is orthogonal to every vector in W.

$$
\begin{aligned}
& \vec{z} \text { is orthogond to } W \text { if } \\
& \vec{z} \cdot \vec{W}=0 \text { for every } \vec{W} \text { in } W .
\end{aligned}
$$

Definition: Given a subspace W of \mathbb{R}^{n}, the set of all vectors orthogonal to W is called the orthogonal complement of W and is denoted by

$$
W^{\perp} .
$$

Theorem:
W^{\perp} is a subspace of \mathbb{R}^{n}.
Note that for any $\vec{\omega}$ in W.

$$
\vec{w} \cdot \overrightarrow{0}=w_{1} \cdot 0+w_{2} \cdot 0+\ldots+w_{n} \cdot 0=0
$$

So $\overline{0}$ is orthogond to W; it is in W^{\perp}.
Suppose \vec{u} and \vec{v} are in W^{\perp}. Then $\vec{u} \cdot \vec{w}=0$ and $\vec{v} \cdot \vec{w}=0$ for every \vec{W} in W. Note

$$
(\vec{u}+\vec{v}) \cdot \vec{w}=\vec{u} \cdot \vec{w}+\vec{v} \cdot \vec{w}=0+0=0
$$

So $\vec{u}+\vec{v}$ is in W^{\perp}. W^{\perp} is closed under vector addition.

For scalar c and \vec{W} in W

$$
(c \vec{u}) \cdot \vec{w}=c(\vec{u} \cdot \vec{w})=c(0)=0
$$

Hence W^{\perp} is closed under scalar multiplication.
W^{\perp} meets all properties required to be a subspace of \mathbb{R}^{n}.

Example
Let $W=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$. Show that $W^{\perp}=\operatorname{Span}\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$. Give a geometric interpretation of W and W^{\perp} as subspaces of \mathbb{R}^{3}.

If \vec{w} is in W, then $\vec{w}=w_{1}\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]+w_{3}\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{c}w_{1} \\ 0 \\ w_{3}\end{array}\right]$ for some real numbs w, and w_{3}. For \vec{z} in \mathbb{R}^{3}, $\vec{z}=\left[\begin{array}{l}z_{1} \\ z_{2} \\ z_{3}\end{array}\right]$, if $\vec{z} \cdot \vec{w}=0$, then \vec{z} is in ω^{\perp}. $0=\bar{z} \cdot \bar{w}=z_{1} w_{1}+0+z_{3} w_{3}$. This has to hold for even w_{1}, w_{3} pair. If $w_{1}=1$ and $w_{3}=0$, we
get $z_{1} \cdot 1=0 \Rightarrow z_{1}=0$. Toking $w_{1}=0, w_{3}=1$,
we get $0=z_{3} \cdot 1 \Rightarrow z_{3}=0$. So $\frac{1}{z}$ must hove the form $\vec{z}=\left[\begin{array}{c}0 \\ z_{2} \\ 0\end{array}\right]=z_{2}\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$. Hence

$$
w^{\perp}=\operatorname{spon}\left\{\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\}
$$

As for the geometry, \bar{w} in W looks like $\left(w_{1}, 0, w_{3}\right)$. Thenar ane points in the $x z$ ploce. Points in W^{\perp} look like $\left(0, z_{2}, 0\right)$.

This is the y-axis.

Example
Let $A=\left[\begin{array}{ccc}1 & 3 & 2 \\ -2 & 0 & 4\end{array}\right]$. Show that if \mathbf{x} is in $\operatorname{Nul}(A)$, then \mathbf{x} is in $[\operatorname{Row}(A)]^{\perp}$.

If \vec{x} is in Null A, than $A \vec{x}=\overrightarrow{0}$. For $\operatorname{such} \vec{x}, \quad \vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 3 & 2 \\
-2 & 0 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{c}
x_{1}+3 x_{2}+2 x_{3} \\
-2 x_{1}+4 x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{aligned}
$$

$x_{1}+3 x_{2}+2 x_{3}=\vec{X} \cdot \vec{V}_{1}$ where \vec{v}_{1} is the first row of A and $-2 x_{1}+4 x_{3}=\vec{x} \cdot \vec{v}_{2}$ where \vec{v}_{2} is the $2^{\text {nd }}$ row of A.

Since row $A=\operatorname{spon}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$, ny \vec{x} in NuS A is orthogond to ever vector in row A.

Theorem

Theorem: Let A be an $m \times n$ matrix. The orthogonal complement of the row space of A is the null space of A. That is

$$
[\operatorname{Row}(A)]^{\perp}=\operatorname{Nul}(A) .
$$

The orthongal complement of the column space of A is the null space of A^{T}-i.e.

$$
[\operatorname{Col}(A)]^{\perp}=\operatorname{Nul}\left(A^{T}\right)
$$

Example: Find the orthogonal complement of $\operatorname{Col}(A)$

$$
\begin{aligned}
A=\left[\begin{array}{ccc}
5 & 2 & 1 \\
-3 & 3 & 0 \\
2 & 4 & 1 \\
2 & -2 & 9 \\
0 & 1 & -1
\end{array}\right] \quad\left[C_{0 l} A\right]^{1}=\operatorname{Nul}\left(A^{\top}\right) \\
A^{\top}=\left[\begin{array}{ccccc}
5 & -3 & 2 & 2 & 0 \\
2 & 3 & 4 & -2 & 1 \\
1 & 0 & 1 & 9 & -1
\end{array}\right] \\
\xrightarrow{\text { ref }}\left[\begin{array}{ccccc}
1 & 0 & 0 & -54 & 7 \\
0 & 1 & 0 & -146 & 19 / 3 \\
0 & 0 & 1 & 63 & -8
\end{array}\right] \\
\text { For } \vec{x} \text { in Nhl } A^{\top} \quad \begin{array}{ll}
x_{1} & =54 x_{4}-7 x_{5} \\
x_{2} & =\frac{146}{3} x_{4}-\frac{19}{3} x_{5} \\
x_{3} & =-63 x_{4}+8 x_{5}
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
\vec{x}_{x}=x_{4}\left[\begin{array}{c}
x_{4}, x_{5}-\text { frec } \\
\frac{146}{3} \\
-63 \\
1 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
-7 \\
\frac{-19}{3} \\
8 \\
0 \\
1
\end{array}\right] \\
{[\operatorname{col} A]^{\perp}=\operatorname{spm}} \\
\left\{\left[\begin{array}{c}
54 \\
\frac{146}{3} \\
-63 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-7 \\
-\frac{19}{3} \\
8 \\
0 \\
1
\end{array}\right]\right\}
\end{gathered}
$$

Section 6.2: Orthogonal Sets

Remark: We know that if $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{p}\right\}$ is a basis for a subspace W of \mathbb{R}^{n}, then each vector \mathbf{x} in W can be realized (uniquely) as a sum

$$
\mathbf{x}=c_{1} \mathbf{b}_{2}+\cdots+c_{p} \mathbf{b}_{p}
$$

If n is very large, the computations needed to determine the coefficients c_{1}, \ldots, c_{p} may require a lot of time (and machine memory).

Question: Can we seek a basis whose nature simplifies this task? And what properties should such a basis possess?

Orthogonal Sets

Definition: An indexed set $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ in \mathbb{R}^{n} is said to be an orthogonal set provided each pair of distinct vectors in the set is orthogonal. That is, provided

$$
\mathbf{u}_{i} \cdot \mathbf{u}_{j}=0 \quad \text { whenever } \quad i \neq j .
$$

Example: Show that the set $\left\{\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ -4 \\ 7\end{array}\right]\right\}$ is an orthogonal set.

$$
\text { label those } \quad \vec{u}_{1} \quad \vec{u}_{2} \quad \vec{u}_{3}
$$

$$
\begin{aligned}
& \vec{u}_{1} \cdot \vec{u}_{2}=3(-1)+1(2)+1(1)=-3+2+1=0 \\
& \vec{u}_{1} \cdot \vec{u}_{3}=3(-1)+1(-4)+1(7)=-3-4+7=0
\end{aligned}
$$

$$
\vec{u}_{2} \cdot \vec{u}_{3}=-1(-1)+2(-4)+1 \cdot(7)=1-8+7=0
$$

So $\vec{u}_{i} \cdot \vec{u}_{j}=0$ for all $i \neq j$. The
set is orthogond.

Orthongal Basis

Definition: An orthogonal basis for a subspace W of \mathbb{R}^{n} is a basis that is also an orthogonal set.

Theorem: Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal basis for a subspace W of \mathbb{R}^{n}. Then each vector \mathbf{y} in W can be written as the linear combination

$$
\mathbf{y}=c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{p} \mathbf{u}_{p}, \quad \text { where the weights }
$$

$$
c_{j}=\frac{\mathbf{y} \cdot \mathbf{u}_{j}}{\mathbf{u}_{j} \cdot \mathbf{u}_{j}} .
$$

Tame u_{j}

$$
\begin{aligned}
\vec{u}_{j} \vec{y}^{\prime} & =\vec{u}_{j} \cdot\left(c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}+\ldots+c_{j} \vec{u}_{j}+\ldots+c_{p} \vec{u}_{p}\right) \\
& =c_{1} \vec{u}_{1} \cdot \vec{u}_{j}+c_{2} \vec{u}_{2} \cdot \vec{u}_{j}+\cdots+c_{j} \vec{u}_{j} \cdot \vec{u}_{j}+\ldots+c_{p} \vec{u}_{p} \cdot \vec{u}_{j} \\
& =0+0+\cdots+c_{j}\left\|\vec{u}_{j}\right\|^{2}+0 \ldots \\
& c_{j}=\frac{\vec{u}_{j} \cdot \vec{v}_{j}}{\left\|\vec{u}_{j}\right\|^{2}}
\end{aligned}
$$

Example
$\left\{\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ -4 \\ 7\end{array}\right]\right\}$ is an orthogonal basis of \mathbb{R}^{3}. Express
$\vec{\omega}_{1} \quad \vec{u}_{2}\left[\begin{array}{c}-2 \\ 3 \\ 0\end{array}\right] \begin{aligned} & \vec{v}_{3} \\ & \text { as a linear combination of the basis vectors. }\end{aligned}$

$$
\begin{aligned}
& \left\|\vec{u}_{1}\right\|^{2}=9+1+1=11, \quad\left\|\vec{u}_{2}\right\|^{2}=1+4+1=6, \quad\left\|\vec{u}_{2}\right\|^{2}=1+16+49=66 \\
& \vec{y} \cdot \vec{u}_{1}=-6+3=-3, \quad \vec{y} \cdot \vec{u}_{2}=2+6=8, \quad \vec{y} \cdot \vec{u}_{3}=2-12=-10 \\
& \vec{y}=\frac{-3}{11} \vec{u}_{1}+\frac{8}{6} \vec{u}_{2}-\frac{10}{66} \vec{u}_{3} \\
& =\frac{-3}{11} \vec{u}_{1}+\frac{4}{3} \vec{u}_{2}-\frac{5}{33} \vec{u}_{3}=\frac{-9 \vec{u}_{1}+44 \vec{u}_{2} \cdot 5 \vec{u}_{3}}{33}
\end{aligned}
$$

Projection

Given a nonzero vector u, suppose we wish to decompose another nonzero vector \mathbf{y} into a sum of the form

$$
\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}
$$

in such a way that $\hat{\mathbf{y}}$ is parallel to \mathbf{u} and \mathbf{z} is perpendicular to \mathbf{u}.

Projection
Since $\hat{\mathbf{y}}$ is parallel to \mathbf{u}, there is a scalar α such that

$$
\hat{\mathbf{y}}=\alpha \mathbf{u} .
$$

From $\vec{y}=\hat{y}+\vec{z}, \hat{y}=\vec{y}-\vec{z}$. Dot product $w \mid \vec{u}$

$$
\begin{aligned}
& \vec{u} \cdot \hat{y}=\vec{u} \cdot(\vec{y}-\vec{z})=\vec{u} \cdot \vec{y}-\vec{u} \cdot \vec{z} \\
& \vec{u} \cdot(\alpha \vec{u})=\vec{u} \cdot \vec{y}-0 \\
& \quad \alpha(\vec{u} \cdot \vec{u})=\vec{u} \cdot \vec{y} \Rightarrow \alpha=\frac{\vec{u} \cdot \vec{y}}{\|\vec{u}\|^{2}}
\end{aligned}
$$

