October 12 Math 3260 sec. 58 Fall 2017

Section 6.1: Inner Product, Length, and Orthogonality

Recall that we defined the inner product in \mathbb{R}^n : **Definition:** For vectors **u** and **v** in \mathbb{R}^n we define the **inner product** of **u** and **v** (also called the **dot product**) by the **matrix product**

$$\mathbf{u}^{T}\mathbf{v} = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n.$$

October 13, 2017

1/32

We noted that this product has several properties.

Theorem (Properties of the Inner Product)

We'll use the notation $\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v}$.

イロト 不得 トイヨト イヨト 二日

October 13, 2017

2/32

Theorem: For \mathbf{u} , \mathbf{v} and \mathbf{w} in \mathbb{R}^n and real scalar c(a) $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$

(b)
$$(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$$

(c)
$$c(\mathbf{u} \cdot \mathbf{v}) = (c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v})$$

(d) $\mathbf{u} \cdot \mathbf{u} \ge 0$, with $\mathbf{u} \cdot \mathbf{u} = 0$ if and only if $\mathbf{u} = \mathbf{0}$.

The Norm and Orthogonality

Definition: The **norm** of the vector **v** in \mathbb{R}^n is the nonnegative number denoted and defined by

$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

イロト 不得 トイヨト イヨト ヨー ろくの October 13, 2017

3/32

where v_1, v_2, \ldots, v_n are the components of **v**.

If v is any nonzero vector, the vector $\mathbf{v}/\|\mathbf{v}\|$ is a unit vector in the direction of **v**.

Definition: Two vectors are **u** and **v** orthogonal if $\mathbf{u} \cdot \mathbf{v} = 0$.

In \mathbb{R}^n , orthogonality corresponds geometrically with begin perpendicular.

Orthogonal Complement

Definition: Let *W* be a subspace of \mathbb{R}^n . A vector **z** in \mathbb{R}^n is said to be **orthogonal to** *W* if **z** is orthogonal to every vector in *W*.

Definition: Given a subspace W of \mathbb{R}^n , the set of all vectors orthogonal to W is called the **orthogonal complement** of W and is denoted by

 W^{\perp} .

October 13, 2017

4/32

Theorem:

 W^{\perp} is a subspace of \mathbb{R}^n . Note, for any win W, J. W= OV, + OU2 + ... + OUn = 0. S. Ois in W¹. If to ad to crein WL, then T. W = D and V. W = O for every W in W. Then $(\vec{\iota} + \vec{\upsilon}) \cdot \vec{\upsilon} = \vec{\iota} \cdot \vec{\upsilon} + \vec{\upsilon} \cdot \vec{\upsilon} = 0 + 0 = 0$. WI is closed under vector addition. For scalar a nd win W

 $(c\vec{h}) \cdot \vec{w} = c(\vec{h} \cdot \vec{w}) = c(0) = 0$

≣ ▶ ৰ ≣ ▶ ≣ ৩৭৫ October 13, 2017 5/32

Example

Let
$$W = \text{Span}\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}$$
. Show that $W^{\perp} = \text{Span}\left\{ \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$.
Give a geometric interpretation of W and W^{\perp} as subspaces of \mathbb{R}^{3} .
Any vector \overline{w} in W has the form
 $\overline{w} = w$, $\begin{bmatrix} 0\\0\\0\\0 \end{bmatrix} + w_{3} \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} = \begin{bmatrix} w_{1}\\w_{2} \end{bmatrix}$. If \overline{z} is in W^{\perp}
where $\overline{z} = \begin{bmatrix} z_{1}\\z_{2}\\z_{3} \end{bmatrix}$, then
 $\overline{z} \cdot \overline{w} = 0 = z_{1}w_{1} + z_{3}w_{3}$.
Thus has to hold for all w_{1}, w_{3} pairs. If $w_{1} = 1$ and
 $w_{3} = 0$, we get
 $0 = \overline{z}, 1 + \overline{z}_{3} \cdot 0 \implies \overline{z}_{1} = 0$.

October 13, 2017 7 / 32

Taking
$$W_{1}=0$$
 and $W_{3}=1$, wed get
 $0=Z_{3}\cdot 1 \implies Z_{3}=0$.
The form of \vec{z} must be $\vec{z}=Z_{2}\begin{bmatrix}0\\1\\0\end{bmatrix}$, hence
 $W^{\perp}=$ Spen $\{\begin{bmatrix}0\\1\\0\end{bmatrix}\}^{*}$.

October 13, 2017 8 / 32

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

This is the y-axis.

Example

Let $A = \begin{bmatrix} 1 & 3 & 2 \\ -2 & 0 & 4 \end{bmatrix}$. Show that if **x** is in Nul(*A*), then **x** is in $[\operatorname{Row}(A)]^{\perp}$. $\operatorname{Row} A = \operatorname{Span} \left\{ \begin{array}{c} 1 \\ 3 \\ 2 \end{array} , \begin{array}{c} -7 \\ 0 \\ 4 \end{array} \right\}$ If X is in Nul (A), the AX=0. For X= X $A\vec{X} = \begin{bmatrix} 1 & 3 & 2 \\ -2 & 0 & 4 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ Y_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} x_1 + 3x_2 + 2x_3 \\ -2x_1 + 4x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

The entries are the inner products of X with the rows of A. So X is or thogonal to each row in A. **Theorem:** Let *A* be an $m \times n$ matrix. The orthogonal complement of the row space of *A* is the null space of *A*. That is

 $[\operatorname{Row}(A)]^{\perp} = \operatorname{Nul}(A).$

The orthongal complement of the column space of A is the null space of A^{T} —i.e.

 $[\operatorname{Col}(A)]^{\perp} = \operatorname{Nul}(A^{T}).$

Example: Find the orthogonal complement of Col(A)

$$A = \begin{bmatrix} 5 & 2 & 1 \\ -3 & 3 & 0 \\ 2 & 4 & 1 \\ 2 & -2 & 9 \\ 0 & 1 & -1 \end{bmatrix} \qquad \begin{bmatrix} c_{oll} A \end{bmatrix}^{-1} : NwL(A^{T})$$
$$\begin{bmatrix} 5 & -3 & 2 & 2 & 0 \\ 2 & 3 & 4 & -2 & 1 \\ 1 & 0 & 1 & 9 & -1 \end{bmatrix}$$
$$\frac{rrccf}{J} \qquad \begin{bmatrix} 1 & 0 & 0 & -544 & 7 \\ 0 & 1 & 0 & -\frac{146}{3} & \frac{19}{3} \\ 0 & 0 & 1 & 63 & -8 \end{bmatrix}$$
$$If A^{T} X = 0, \qquad X_{1} = 54 \times 4 - 7 \times 5$$
$$X_{2} = \frac{146}{3} \times 4 - \frac{19}{3} \times 5$$

October 13, 2017 14 / 32

$$\begin{aligned} x_{3} &= -63 \times y_{1} + 8 \times s \\ x_{n}, &x_{5} - 6x_{6} \\ \hline x_{1}, &x_{5} - 6x_{6} \\ \hline x_{2} &= x_{4} \quad \begin{pmatrix} s_{4} \\ \frac{146}{3} \\ -63 \\ 1 \\ 0 \end{pmatrix} + x_{5} \begin{pmatrix} -7 \\ -16 \\ \frac{3}{8} \\ 0 \\ 1 \end{pmatrix} \\ \begin{pmatrix} -7 \\ -16 \\ \frac{3}{8} \\ 0 \\ 1 \\ 0 \end{pmatrix} \quad \begin{pmatrix} s_{4} \\ \frac{146}{3} \\ -63 \\ 1 \\ 0 \end{pmatrix} , \quad \begin{pmatrix} -7 \\ -16 \\ \frac{1}{18} \\ \frac{3}{8} \\ 0 \\ 1 \end{pmatrix} \\ \begin{pmatrix} -7 \\ -16 \\ \frac{1}{18} \\ \frac{3}{8} \\ 0 \\ 1 \end{pmatrix} \\ \begin{pmatrix} -7 \\ -16 \\ \frac{1}{18} \\ \frac{3}{8} \\ 0 \\ 1 \end{pmatrix} \\ \begin{pmatrix} -7 \\ -16 \\ \frac{1}{18} \\ \frac{3}{8} \\ 0 \\ 1 \end{pmatrix} \\ \begin{pmatrix} -7 \\ -16 \\ \frac{1}{18} \\ \frac{3}{8} \\ 0 \\ 1 \end{pmatrix} \\ \begin{pmatrix} -7 \\ -16 \\ \frac{1}{18} \\ \frac{3}{8} \\ 0 \\ 1 \end{pmatrix} \\ \begin{pmatrix} -7 \\ -16 \\ \frac{1}{18} \\ \frac{3}{8} \\ 0 \\ 1 \end{pmatrix} \\ \end{pmatrix}$$