October 12 Math 3260 sec. 58 Fall 2017

Section 6.1: Inner Product, Length, and Orthogonality

Recall that we defined the inner product in \mathbb{R}^{n} : Definition: For vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{n} we define the inner product of \mathbf{u} and \mathbf{v} (also called the dot product) by the matrix product

$$
\mathbf{u}^{T} \mathbf{v}=\left[\begin{array}{llll}
u_{1} u_{2} \cdots u_{n}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}
$$

We noted that this product has several properties.

Theorem (Properties of the Inner Product)

$$
\text { We'll use the notation } \quad \mathbf{u} \cdot \mathbf{v}=\mathbf{u}^{\top} \mathbf{v} \text {. }
$$

Theorem: For \mathbf{u}, \mathbf{v} and \mathbf{w} in \mathbb{R}^{n} and real scalar c
(a) $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
(b) $(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{w}$
(c) $c(\mathbf{u} \cdot \mathbf{v})=(c \mathbf{u}) \cdot \mathbf{v}=\mathbf{u} \cdot(c \mathbf{v})$
(d) $\mathbf{u} \cdot \mathbf{u} \geq 0$, with $\mathbf{u} \cdot \mathbf{u}=0$ if and only if $\mathbf{u}=\mathbf{0}$.

The Norm and Orthogonality

Definition: The norm of the vector \mathbf{v} in \mathbb{R}^{n} is the nonnegative number denoted and defined by

$$
\|\mathbf{v}\|=\sqrt{\mathbf{v} \cdot \mathbf{v}}=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}
$$

where $v_{1}, v_{2}, \ldots, v_{n}$ are the components of \mathbf{v}.
If \mathbf{v} is any nonzero vector, the vector $\mathbf{v} /\|\mathbf{v}\|$ is a unit vector in the direction of \mathbf{v}.

Definition: Two vectors are \mathbf{u} and \mathbf{v} orthogonal if $\mathbf{u} \cdot \mathbf{v}=0$.
In \mathbb{R}^{n}, orthogonality corresponds geometrically with begin perpendicular.

Orthogonal Complement

Definition: Let W be a subspace of \mathbb{R}^{n}. A vector \mathbf{z} in \mathbb{R}^{n} is said to be orthogonal to W if \mathbf{z} is orthogonal to every vector in W.

$$
\vec{z} \cdot \vec{w}=0 \text { for every } \vec{w} \text { in } W \text {. }
$$

Definition: Given a subspace W of \mathbb{R}^{n}, the set of all vectors orthogonal to W is called the orthogonal complement of W and is denoted by

$$
W^{\perp} .
$$

Theorem:
W^{\perp} is a subspace of \mathbb{R}^{n}.
Note, for any \vec{w} in $W, \overrightarrow{0} \cdot \vec{W}=0 w_{1}+0 w_{2}+\ldots+0 w_{n}=0$.
So $\overrightarrow{0}$ is in W^{\perp}
If \vec{u} and \vec{v} are in W^{\perp}, then
$\vec{u} \cdot \vec{w}=0$ and $\vec{v} \cdot \vec{w}=0$ for every \vec{w} in W.
Then $(\vec{u}+\vec{v}) \cdot \vec{w}=\vec{u} \cdot \vec{w}+\vec{v} \cdot \vec{w}=0+0=0$.
W^{\perp} is closed under vector addition.
For scalar c nd $\vec{\omega}$ in W

$$
(c \vec{h}) \cdot \vec{w}=c(\vec{u} \cdot \vec{w})=c(0)=0
$$

October 13, 2017
$5 / 32$
W^{\perp} is closed under scaler multiplication fou. Hence W^{\perp} is a subspace of \mathbb{R}^{n}.

Example
Let $W=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$. Show that $W^{\perp}=\operatorname{Span}\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$. Give a geometric interpretation of W and W^{\perp} as subspaces of \mathbb{R}^{3}.

Any vector \vec{W} in W has the form

$$
\vec{w}=w_{1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+w_{3}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
w_{1} \\
0 \\
w_{2}
\end{array}\right] \text {. If } \vec{z} \text { is in } w^{\perp}
$$

where $\vec{z}=\left[\begin{array}{l}z_{1} \\ z_{2} \\ z_{3}\end{array}\right]$, then

$$
\vec{z} \cdot \vec{w}=0=z_{1} w_{1}+z_{3} w_{3}
$$

This has to hold for all w_{1}, w_{3} pairs. If $w_{1}=1$ and $w_{3}=0$, we get

$$
0=z_{1} \cdot 1+z_{3} \cdot 0 \Rightarrow z_{1}=0
$$

Taking $w_{1}=0$ and $w_{3}=1$, wed get

$$
0=z_{3} \cdot 1 \Rightarrow z_{3}=0
$$

The form of \vec{z} must be $\vec{z}=z_{2}\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$, hone

$$
w \perp=\operatorname{spon}\left\{\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\}
$$

Geometrically, W is the set of vectors $(x, 0, z)$. These points constitute the $x z$-plone.

The vectors in ω^{\perp} look like $(0, y, 0)$.

This is the y-axis.

Example
Let $A=\left[\begin{array}{ccc}1 & 3 & 2 \\ -2 & 0 & 4\end{array}\right]$. Show that if \mathbf{x} is in $\operatorname{Nul}(A)$, then \mathbf{x} is in $[\operatorname{Row}(A)]^{\perp}$.

$$
\operatorname{Row} A=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right],\left[\begin{array}{c}
-2 \\
0 \\
4
\end{array}\right]\right\} \text {. }
$$

If \vec{x} is in $\operatorname{Nul}(A)$, then $A \vec{x}=\overrightarrow{0}$. For $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$

$$
\begin{aligned}
A \vec{x}= & {\left[\begin{array}{ccc}
1 & 3 & 2 \\
-2 & 0 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] } \\
& {\left[\begin{array}{l}
x_{1}+3 x_{2}+2 x_{3} \\
-2 x_{1}+4 x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

The entries are the inner products of \vec{x} with the rows of A. So \vec{x} is or thogond to each row in A.

Theorem

Theorem: Let A be an $m \times n$ matrix. The orthogonal complement of the row space of A is the null space of A. That is

$$
[\operatorname{Row}(A)]^{\perp}=\operatorname{Nul}(A) .
$$

The orthongal complement of the column space of A is the null space of A^{T}-i.e.

$$
[\operatorname{Col}(A)]^{\perp}=\operatorname{Nul}\left(A^{T}\right)
$$

Example: Find the orthogonal complement of $\operatorname{Col}(A)$

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
5 & 2 & 1 \\
-3 & 3 & 0 \\
2 & 4 & 1 \\
2 & -2 & 9 \\
0 & 1 & -1
\end{array}\right] \\
& \\
& \\
& \\
& \text { If } A^{\top} \vec{x}=\overrightarrow{0}
\end{aligned} \quad\left[\begin{array}{ccccc}
1 & 0 & 0 & -54 & 7 \\
0 & 1 & 0 & \frac{-146}{3} & \frac{19}{3} \\
2 & 3 & 4 & -2 & 1 \\
1 & 0 & 1 & 9 & -1
\end{array}\right]
$$

$$
\begin{gathered}
x_{3}=-63 x_{4}+8 x_{3} \\
x_{4}, x_{5}-\text { free } \\
\vec{x}=x_{4}\left[\begin{array}{c}
54 \\
\frac{146}{3} \\
-63 \\
1 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
-7 \\
-\frac{19}{3} \\
8 \\
0 \\
1
\end{array}\right] \\
{[\operatorname{col}(A)] \perp=\operatorname{spon}\left\{\left[\begin{array}{c}
54 \\
\frac{146}{3} \\
-63 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-7 \\
-191_{3} \\
0 \\
0 \\
1
\end{array}\right]\right.}
\end{gathered}
$$

