October 19 MATH 1113 sec. 52 Fall 2018

Sections 6.1 \& 6.2: Trigonometric Functions of Acute Angles

We defined the six trigonometric values of an acute angle θ with reference to the triangle as labeled.

(adj) side adjacent to θ

Example
Determine the six trigonometric values of the acute angle θ.

Calling the opposite side length
a,

$$
\begin{aligned}
3^{2}+a^{2} & =7^{2} \\
a^{2} & =49-9=40 \\
a & =\sqrt{40}=2 \sqrt{10}
\end{aligned}
$$

$$
\sin \theta=\frac{o p p}{\ln p}=\frac{2 \sqrt{10}}{7}
$$

$$
\begin{aligned}
& \cos \theta=\frac{a d j}{h y p}=\frac{3}{7} \\
& \tan \theta=\frac{\text { opp }}{a d j}=\frac{2 \sqrt{10}}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \csc \theta=\frac{1}{\sin \theta}=\frac{7}{2 \sqrt{10}} \\
& \sec \theta=\frac{1}{\cos \theta}=\frac{7}{3} \\
& \cot \theta=\frac{1}{\tan \theta}=\frac{3}{2 \sqrt{10}}
\end{aligned}
$$

Example
Determine the six trigonometric values of the acute angle θ.

$$
\sin \theta=\frac{4}{5}=\frac{o p p}{h n p}=\frac{8}{c}
$$

$$
b^{2}+8^{2}=10^{2} \Rightarrow b^{2}=10^{2}-8^{2}
$$

$$
b=6
$$

$$
\begin{aligned}
& \cos \theta=\frac{a d j}{\operatorname{hnp}}=\frac{6}{10}=\frac{3}{5} \\
& \tan \theta=\frac{\text { opp }}{\operatorname{hap}}=\frac{8}{6}=\frac{4}{3}
\end{aligned}
$$

$$
\begin{array}{ll}
\csc \theta=\frac{1}{\sin \theta}=\frac{5}{4} \\
\sec \theta=\frac{1}{\cos \theta}=\frac{5}{3} & \cot \theta=\frac{1}{\tan \theta}=\frac{3}{4}
\end{array}
$$

Question

For the angle θ shown, which statement is correct?

(a) $\sin \theta=\frac{\sqrt{8}}{3}$ and $\cos \theta=\frac{1}{3}$
(b) $\sin \theta=\frac{1}{3}$ and $\cos \theta=\frac{\sqrt{2}}{3}$
(c) $\tan \theta=\frac{1}{3}$ and $\sin \theta=\frac{\sqrt{2}}{3}$
(d) $\tan \theta=\sqrt{2}$ and $\cot \theta=\frac{1}{\sqrt{2}}$

Some Key Trigonometric Values

Use the triangles to determine the six trigonometric values of the angles $30^{\circ}, 45^{\circ}$, and 60°.

Figure: An isosceles right triangle of leg length 1 (left), and half of an equilateral triangle of side length 2 (right).

$$
\begin{array}{lll}
\sin 45^{\circ}=\frac{1}{\sqrt{2}} & \sin 30^{\circ}=\frac{1}{2} & \sin 60^{\circ}=\frac{\sqrt{3}}{2} \\
\cos 45^{\circ}=\frac{1}{\sqrt{2}} & \cos 30^{\circ}=\frac{\sqrt{3}}{2} & \cos 60^{\circ}=\frac{1}{2} \\
\tan 45^{\circ}=1 & \tan 30^{\circ}=\frac{1}{\sqrt{3}} & \tan 60^{\circ}=\sqrt{3} \\
\csc 45^{\circ}=\sqrt{2} & \csc 30^{\circ}=2 & \csc 60^{\circ}=\frac{2}{\sqrt{3}} \\
\sec 45^{\circ}=\sqrt{2} & \sec 30^{\circ}=\frac{2}{\sqrt{3}} & \sec 60^{\circ}=2 \\
\cot 45^{\circ}=1 & \cot 30^{\circ}=\sqrt{3} & \cot 60^{\circ}=\frac{1}{\sqrt{3}}
\end{array}
$$

Commit To Memory

It is to our advantage to remember the following:

$$
\begin{array}{lll}
\sin 30^{\circ}=\frac{1}{2}, & \sin 45^{\circ}=\frac{1}{\sqrt{2}}, & \sin 60^{\circ}=\frac{\sqrt{3}}{2} \\
\cos 30^{\circ}=\frac{\sqrt{3}}{2}, & \cos 45^{\circ}=\frac{1}{\sqrt{2}}, & \cos 60^{\circ}=\frac{1}{2} \\
\tan 30^{\circ}=\frac{1}{\sqrt{3}}, & \tan 45^{\circ}=1, & \tan 60^{\circ}=\sqrt{3}
\end{array}
$$

We'll use these to find some other trigonometric values. Still others will require a calculator.

Calculator

Figure: Any scientific calculator will have built in functions for sine, cosine and tangent. (TI-84 shown)

Using a Calculator
Evaluate the following using a calculator. Round answers to three decimal places.

$$
\begin{aligned}
& \sin 16^{\circ}=0.276 \\
& \sec 78.3^{\circ}=\frac{1}{\cos \left(78.3^{\circ}\right)}=4.931 \\
& \tan \left(65.4^{\circ}\right)=2.184
\end{aligned}
$$

Application Example

Before cutting down a dead tree, you wish to determine its height. From a horizontal distance of 40 ft , you measure the angle of elevation from the ground to the top of the tree to be 61°. Determine the tree height to the nearest $100^{\text {th }}$ of a foot.

Using the $1^{\text {st }}$ relation

$$
\begin{aligned}
h & =(40 \mathrm{ft}) \tan 61^{\circ} \\
& \approx 72.16 \mathrm{ft}
\end{aligned}
$$

