Oct. 19 Math 1190 sec. 52 Fall 2016

Section 4.3: The Mean Value Theorem

Rolle's Theorem: Let f be a function that is
i continuous on the closed interval $[a, b]$,
ii differentiable on the open interval (a, b), and
iii such that $f(a)=f(b)$.
Then there exists a number c in (a, b) such that $f^{\prime}(c)=0$.

The Mean Value Theorem (MVT) is arguably the most significant theorem in calculus. This is even accounting for a theorem we'll discuss later called the Fundamental Theorem of Calculus.

Rolle's Theorem

Figure: The theorem illustrated: How to find c is not indicated, but its existence is guaranteed.

Question

Let $f(x)=|x|$. Note that f is continuous on $[-1,1]$ and $f(-1)=f(1)=1$. However, there is no c value in $(-1,1)$ such that $f^{\prime}(c)=0$. Which of the following is true?
(a) This contradicts Rolle's theorem.

(b) f is not really continuous on $[-1,1]$, so Rolle's theorem doesn't apply.
(c) f is not differentiable on $(-1,1)$, so Rolle's theorem doesn't apply.

The Mean Value Theorem

Theorem: Suppose f is a function that satisfies
i f is continuous on the closed interval $[a, b]$, and
ii f is differentiable on the open interval (a, b).
Then there exists a number c in (a, b) such that

$$
\begin{aligned}
& f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} \text {, equivalently } f(b)-f(a)=f^{\prime}(c)(b-a) .
\end{aligned}
$$

Figure

Figure

Figure: Celebration of the MVT in Beijing.

Example
Verify that the function satisfies the hypotheses of the Mean Value Theorem on the given interval. Then find all values of c that satisfy the conclusion of the MVT.

$$
f(x)=x^{3}-2 x, \quad[0,2]
$$

As a polynomial, f is continuous on $(-\infty, \infty)$ hence on $[0,2]$. It's also differentiable on $(-\infty, \infty)$ hence on $(0,2)$.
we want to find all in $(0,2)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}=\frac{f(2)-f(0)}{2-0}
$$

$$
f^{\prime}(c)=\frac{2^{3}-2 \cdot 2-\left(0^{3}-2 \cdot 0\right)}{2}=\frac{8-4-0}{2}=\frac{4}{2}=2
$$

$$
f^{\prime}(x)=3 x^{2}-2 \text { so well solve }
$$

$$
f^{\prime}(c)=3 c^{2}-2=2 \Rightarrow 3 c^{2}=4 \Rightarrow c^{2}=\frac{4}{3}
$$

$$
c=\sqrt{\frac{4}{3}}=\frac{2}{\sqrt{3}} \quad \text { or } \quad c=-\sqrt{\frac{4}{3}}=\frac{-2}{\sqrt{3}}
$$

$$
\text { this is not in }[0,2]
$$

Then is one c value in $(0,2), c=\frac{2}{\sqrt{3}}$.

Question

Let $f(x)=\sqrt{x-2}$, and let $[a, b]=[2,6]$.
(1) The function f satisfies the hypotheses of the MVT. Determine

$$
\frac{f(b)-f(a)}{b-a}
$$

(a) $\frac{f(b)-f(a)}{b-a}=\frac{2}{3}$
$\frac{f(b)-f(a)}{b-c}=\frac{\sqrt{6-2}-\sqrt{2-2}}{6-2}$
(b) $\frac{f(b)-f(a)}{b-a}=\frac{3}{2}$
(c) $\frac{f(b)-f(a)}{b-a}=2$
(d) $\frac{f(b)-f(a)}{b-a}=\frac{1}{2}$

Question

Let $f(x)=\sqrt{x-2}$, and let $[a, b]=[2,6]$.
(2) The function f satisfies the hypotheses of the MVT. Determine

$$
f^{\prime}(x)
$$

(a) $f^{\prime}(x)=-\sqrt{x-2}$

$$
f(x)=(x-2)^{1 / 2}
$$

(b) $f^{\prime}(x)=\frac{1}{\sqrt{x-2}}$

$$
f^{\prime}(x)=\frac{1}{2}(x-2)^{-1 / 2} \cdot 1=\frac{1}{2 \sqrt{x-2}}
$$

(c) $f^{\prime}(x)=\frac{1}{2 \sqrt{x-2}}$
(d) $f^{\prime}(x)=-\frac{1}{2 \sqrt{x-2}}$

Question

$$
\frac{f(b)-f(0)}{b-a}=\frac{1}{2}
$$

Let $f(x)=\sqrt{x-2}$, and let $[a, b]=[2,6]$.

(3) Find all c values guaranteed by the MVT for f on this interval.
(a) $c=\frac{1}{2}$

$$
\frac{1}{2}=\frac{1}{2 \sqrt{c-2}}
$$

(b) $c=3$ or $c=-3$
(c) $c=3$ or $c=4$

$$
\frac{2 \sqrt{1-2}}{2}=1
$$

$$
\sqrt{c-2}=1 \Rightarrow c-2=1
$$

$$
c=3
$$

