October 19 Math 2306 sec 51 Fall 2015
5.1.4: Series Circuit Analog
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Figure: Kirchhoff’s Law: The charge g on the capacitor satisfies
Lg" + Rq' + Lq = E(t).
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LRC Series Circuit (Free Electrical Vibrations)
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199, goq 1
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If the applied force E(t) = 0, then the electrical vibrations of the
circuit are said to be free. These are categorized as

overdamped if R? —4L/C > 0,
critically damped if R?2 —4L/C = 0,
underdamped if R2—-4L/C < 0.

October 16, 2015

2/70



Example

An LRC series circuit with no applied force has an inductance of

L = 2h and capacitance of C = 5 x 10~3f. Determine the condition on

the resistor such that the electrical vibrations are

-3

< 2 Sio 'p

(a) Overdamped, R2-1600 > O L-2h, C

R >4 O ’R UV‘L-“°wv\

(b) Critically damped, or
gz-1.00:0 , F=40

(c) Underdamped. @*-l,00<¢ 0 = cg ® <40
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Example
An LRC-series circuit with inductance 1 h, resistance 10092 and

capacitance 0.0004 f has an applied force of 30 V. Find the charge g

on the capictor if g(0) = 0 C and the initial current i(0) = 2 A. Find the
maximum charge on the capacitor.

Lq"-f LE\‘ + l_c' FE 2 4lo) = 0, Ql(os‘- (y: 2
1"”00?' ¢ as00 9+ 30 Tﬁ”i‘o

Find 4c : g"+ I001'+25001 =0

A
M + [00m 125000 = (m+30) = O .
M= -SO rc‘ﬂ-
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Section 7.1: The Laplace Transform

If f = f(s, t) is a function of two variables s and t, and we compute a
definite integral with respect to ¢,

/a ’ f(s,t) ot

we are left with a function of s alone.

Example: Compute the integral’
4 ¢ 4
/0 (2st+s>—t)dt = gt + &t - %

0
1A bk (s-0" s‘-o-gl)
: 3(\13+ s(W- = - S0+ i

© Jos +Ms -8

'The variable s is treated like a constant when integrating with respect to t—and
visa versa. October 16,2015 11/70



Integral Transform

An integral transform is a mapping that assigns to a function f(t)
another function F(s) via an integral of the form

b
/ K(s, 0 (t) dt.

The function K is called the kernel of the transformation.
The limits a and b may be finite or infinite.

The integral may be improper so that convergence/divergence
must be considered.
This transform is linear in the sense that for «, 5 constants

v

v

v

v

b b b
/ K(s, t)(af(t)+ﬁg(t))dt:a/ K(s, t)f(t)dt+ﬁ/ K(s, t)g(t) dt.
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The Laplace Transform

Definition: Let f({) be defined on [0, c0). The Laplace transform of f is
denoted and defined by

LL(t)} = / e SU(1) dt = F(s).
The domain of the transformation F(s) is the set of all s such that the

integral is convergent.

Note: The kernel for the Laplace transform is K(s, t) = e~ .
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