October 19 Math 2306 sec 54 Fall 2015

5.1.4: Series Circuit Analog

Potential Drops Across Components:

Figure: Kirchhoff's Law: The charge q on the capacitor satisfies $Lq'' + Rq' + \frac{1}{C}q = E(t)$.

LRC Series Circuit (Free Electrical Vibrations)

$$L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{1}{C}q = 0$$

If the applied force E(t) = 0, then the **electrical vibrations** of the circuit are said to be **free**. These are categorized as

overdamped if $R^2 - 4L/C > 0$, critically damped if $R^2 - 4L/C = 0$, underdamped if $R^2 - 4L/C < 0$.

Example

An *LRC* series circuit with no applied force has an inductance of L=2h and capacitance of $C=5\times 10^{-3}f$. Determine the condition on the resistor such that the electrical vibrations are

(a) Overdamped,
$$R^2$$
-1600 > 0 \Rightarrow R^2 > 1600 L= 2h, $C = 5.10^3$ f
 $R > 40 \Omega$

(b) Critically damped, or
$$\mathbb{R}^2$$
-1600=0 $\Rightarrow \mathbb{R}$ =40 Ω $5.10^2 = \frac{5}{1000}$

(c) Underdamped. \mathbb{R}^2 -1600<0 \Rightarrow 0 \leq \mathbb{R} < \neq 0 \mathbb{R}

$$R^2 - \frac{4L}{C} = R^2 - \frac{4.2}{5.10^{-3}} = R^2 - 4.2.200 = R^2 - 1600$$

Example

An LRC-series circuit with inductance 1 h, resistance 100Ω and capacitance 0.0004 f has an applied force of 30 V. Find the charge q on the capictor if q(0) = 0 C and the initial current i(0) = 2 A. Find the maximum charge on the capacitor.

$$L_{3}" + R_{3}' + \frac{1}{C} q = E \qquad q" + 100q' + \frac{1}{10000} q = 30$$

$$q(s) = 0, \quad q'(s) = 2$$

$$q'' + 100q' + 2500q = 30$$

$$q = q_{c} + 3p$$

$$Find q_{c}: \quad q" + 100q' + 2500q = 0 \qquad m^{2} + 100m + 2500 = 0$$

$$(m+50)^{2} = 0$$

$$m = -50$$

0.11 40.0045 5.470

4 D F 4 P F F F F F F F

$$3i'' + 1009i' + 2500 Si = 30 \Rightarrow 2500 A = 30 \Rightarrow A = \frac{3}{250}$$

The general solution to the ODE is

g = C, e + Cote + 3

250

$$q_{(b)} = C_1 e^{\circ} + C_2 \cdot 0 e^{\circ} + \frac{3}{250} = 0$$

$$C_1 = \frac{3}{250}$$

$$q'(0) = -50(\frac{.3}{250})e' + C_2 e' -50 \cdot C_2 \cdot 0e' = 2$$

$$C_2 = 2 - \frac{3}{5} = \frac{10-3}{5} = \frac{7}{5}$$

The charge on the capacitor is

To find the max charge, well find critical point (5) and identify a max.

$$g'(t) = -so(\frac{-3}{2so})e^{-sot} + \frac{7}{s}e^{-sot} - so(\frac{7}{s})te^{-sot}$$

$$= 2e^{-sot} - 70te$$

$$= 2e^{-sot} (1 - 3st)$$

$$g'(t)=0 \Rightarrow 1-3St=0 \Rightarrow t=\frac{1}{3S}$$

1St derivative test $g'(0)=2>0$, $g'(1)=-68e^{-50}<0$
 $g(\frac{1}{3S})$ is an absolute maximum.

The maximum charge is
$$\zeta(\frac{1}{35}) = \frac{-3}{250} e^{\frac{50}{35}} + \frac{7}{5}(\frac{1}{35})e^{\frac{50}{35}} + \frac{3}{250}$$

$$\approx 0.0187 C$$

Section 7.1: The Laplace Transform

If f = f(s, t) is a function of two variables s and t, and we compute a definite integral **with respect to** t,

$$\int_{a}^{b} f(s,t) dt$$

we are left with a function of s alone.

Example: Compute the integral¹

$$\int_{0}^{4} (2st+s^{2}-t) dt = s t^{2} + s^{2} t - \frac{t^{2}}{2} \Big|_{0}^{4}$$

$$= s(4)^{2} + s^{2} \cdot 4 - \frac{4^{2}}{2} - (s \cdot 0^{2} + s^{2} \cdot 0 - \frac{0^{2}}{2}) = 165 + 45^{2} - 8$$
a function of

¹The variable s is treated like a constant when integrating with respect to t—and 0.00 visa versa.

October 16, 2015 11 / 70

Integral Transform

An **integral transform** is a mapping that assigns to a function f(t) another function F(s) via an integral of the form

$$\int_{a}^{b} K(s,t)f(t) dt.$$

- ▶ The function K is called the **kernel** of the transformation.
- ▶ The limits *a* and *b* may be finite or infinite.
- The integral may be improper so that convergence/divergence must be considered.
- ▶ This transform is **linear** in the sense that for α , β constants

$$\int_a^b K(s,t)(\alpha f(t) + \beta g(t)) dt = \alpha \int_a^b K(s,t)f(t) dt + \beta \int_a^b K(s,t)g(t) dt.$$

The Laplace Transform

Definition: Let f(t) be defined on $[0, \infty)$. The Laplace transform of f is denoted and defined by

$$\mathscr{L}{f(t)} = \int_0^\infty e^{-st} f(t) dt = F(s).$$

The domain of the transformation F(s) is the set of all s such that the integral is convergent.

Note: The kernel for the Laplace transform is $K(s, t) = e^{-st}$.