October 19 Math 2306 sec. 57 Fall 2017

Section 13: The Laplace Transform

A quick word about functions of 2-variables:
Suppose $G(s, t)$ is a function of two independent variables (s and t) defined over some rectangle in the plane $a \leq t \leq b, c \leq s \leq d$. If we compute an integral with respect to one of these variables, say t,

$$
\int_{\alpha}^{\beta} G(s, t) d t
$$

- the result is a function of the remaining variable s, and
- the variable s is treated as a constant while integrating with respect to t.

Integral Transform

An integral transform is a mapping that assigns to a function $f(t)$ another function $F(s)$ via an integral of the form

$$
\int_{a}^{b} K(s, t) f(t) d t .
$$

- The function K is called the kernel of the transformation.
- The limits a and b may be finite or infinite.
- The integral may be improper so that convergence/divergence must be considered.
- This transform is linear in the sense that

$$
\int_{a}^{b} K(s, t)(\alpha f(t)+\beta g(t)) d t=\alpha \int_{a}^{b} K(s, t) f(t) d t+\beta \int_{a}^{b} K(s, t) g(t) d t .
$$

The Laplace Transform

Definition: Let $f(t)$ be defined on $[0, \infty)$. The Laplace transform of f is denoted and defined by

$$
\mathscr{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t=F(s) .
$$

The domain of the transformation $F(s)$ is the set of all s such that the integral is convergent.

Note: The kernel for the Laplace transform is $K(s, t)=e^{-s t}$.
Note 2: If we take s to be real-valued, then

$$
\lim _{t \rightarrow \infty} e^{-s t}=0 \quad \text { if } s>0, \text { and } \quad \lim _{t \rightarrow \infty} e^{-s t}=\infty \quad \text { if } s<0
$$

Find the Laplace transform of $f(t)=1$
By definition $\mathcal{L}\{1\}=\int_{0}^{\infty} e^{-s t} \cdot \backslash d t=\int_{0}^{\infty} e^{-s t} d t$
If $s=0, e^{-s t}=e^{0}=1$ the integral:

$$
\int_{0}^{\infty} d t=\lim _{b \rightarrow \infty} \int_{0}^{b} d t=\left.\lim _{b \rightarrow \infty} t\right|_{0} ^{b}=\lim _{b \rightarrow \infty}(b-0)=\infty
$$

The integral is divergent when $s=0$. Zero is not in the conan of $y\{1\}$.
For $s \neq 0 \quad y\{1\}=\int_{0}^{\infty} e^{-s t} d t=\lim _{b \rightarrow \infty} \int_{0}^{b} e^{-s t} d t$

$$
\begin{aligned}
& =\left.\lim _{b \rightarrow \infty} \frac{-1}{s} e^{-s t}\right|_{0} ^{b} \\
& =\lim _{b \rightarrow \infty}\left(\frac{-1}{s} e^{-s b}-\frac{-1}{s} e^{0}\right) \quad \text { for } \quad s>0 \\
& =0+\frac{1}{s}
\end{aligned}
$$

So $y\left\{B=\frac{1}{s}\right.$ wh doncin $s>0$.

Find the Laplace transform of $f(t)=t$
By detrition $y\{t\}=\int_{0}^{\infty} e^{-s t} t d t$
If $s=0, e^{-s t} t=t$. The intesid is $\int_{0}^{\infty} t d t=\infty$. Zero is not in the domain of $y\{t\}$.

For $s \neq 0, y\{t\}=\int_{0}^{\infty} e^{-s t} t d t$
Int by pats

$$
=-\left.\frac{1}{s} t e^{-s t}\right|_{0} ^{\infty}+\frac{1}{\delta} \int_{0}^{\infty} e^{-s t} d t
$$

$$
\begin{array}{cc}
u=t & d u=d t \\
v=\frac{-1}{5} e^{-5 t} & d v=e^{-s t} d t
\end{array}
$$

for $s>0$

$$
\begin{aligned}
& =0-0+\frac{1}{s} \int_{0}^{\infty} e^{-s t} d t \\
& =\frac{1}{s} \mathscr{L}\{1\}=\frac{1}{s} \frac{1}{s}=\frac{1}{s^{2}} \\
& \mathcal{L}\{t\}=\frac{1}{s^{2}} \text { for } s>0
\end{aligned}
$$

A piecewise defined function
Find the Laplace transform of f defined by

$$
\begin{aligned}
& \text { Find the Laplace transform of } f \text { defined by } \\
& f(t)=\left\{\begin{array}{ll}
2 t, & 0 \leq t<10 \\
0, & t \geq 10
\end{array} \quad \text { By def.ntion } \quad y\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t\right. \\
& =\int_{0}^{10} e^{-s t}(2 t) d t+\int_{10}^{\infty} e^{-s t}(0) d t \\
& 0
\end{aligned}
$$

When $S=0$, we get

$$
\int_{0}^{10} 2 t d t=\left.t^{2}\right|_{0} ^{10}=100
$$

when $s \neq 0 \quad \int_{0}^{10} e^{-s t}(2 t) d t$
Int by pals

$$
\begin{array}{ll}
u=t & d u=d t \\
v=\frac{-1}{s} e^{-s t} & d v=e^{-s t} d t
\end{array}
$$

$$
\begin{aligned}
& =2\left(\left.\frac{-1}{s} t e^{-s t}\right|_{0} ^{10}+\frac{1}{s} \int_{0}^{10} e^{-s t} d t\right) \\
& =2\left(\left(\frac{-1}{s} \cdot 10 e^{-s \cdot 10}-0\right)+\frac{1}{s}\left(\left.\frac{-1}{s} e^{-s t}\right|_{0} ^{10}\right)\right. \\
& =2\left(\frac{-10}{s} e^{-10 s}-\frac{1}{s^{2}}\left(e^{-10 s}-e^{0}\right)\right) \\
& =-\frac{20}{s} e^{-10 s}-\frac{2}{s^{2}} e^{-10 s}+\frac{2}{s^{2}} \\
& \mathscr{L}\{f(t)\}=\left\{\begin{array}{l}
100, s=0 \\
\frac{2}{s^{2}}-\frac{2}{s^{2}} e^{-10 s}-\frac{20}{s} e^{-s t}, \quad s \neq 0
\end{array}\right.
\end{aligned}
$$

The Laplace Transform is a Linear Transformation

Some basic results include:

- $\mathscr{L}\{\alpha f(t)+\beta \boldsymbol{g}(t)\}=\alpha F(s)+\beta G(s)$
- $\mathscr{L}\{1\}=\frac{1}{s}, \quad s>0$
- $\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}, \quad s>0$ for $n=1,2, \ldots$
- $\mathscr{L}\left\{e^{a t}\right\}=\frac{1}{s-a}, \quad s>a$
- $\mathscr{L}\{\cos k t\}=\frac{s}{s^{2}+k^{2}}, \quad s>0$
- $\mathscr{L}\{\sin k t\}=\frac{k}{s^{2}+k^{2}}, \quad s>0$

Examples: Evaluate

$$
\mathcal{L}\{\cos (k t)\}=\frac{s}{s^{2}+k^{2}}, s>0
$$

(a) $\quad f(t)=\cos (\pi t)$

$$
\mathcal{L}\{\cos (\pi t)\}=\frac{s}{s^{2}+\pi^{2}}, \quad s>0 .
$$

Examples: Evaluate
(b) $f(t)=2 t^{4}-e^{-5 t}+3$

$$
\begin{gathered}
\mathcal{L}\{1\}=\frac{1}{s}, \mathcal{L}\left\{t t^{n}\right\}=\frac{n!}{s>0} \quad, \quad y\left\{e^{a t}\right\}=\frac{1}{s-a} \quad s>a
\end{gathered}
$$

$$
\begin{aligned}
\mathcal{L}\left\{2 t^{4}-e^{-5 t}+3\right\} & =2 \mathcal{L}\left\{t^{4}\right\}-\mathcal{L}\left\{e^{-5 t}\right\}+3 \mathcal{L}\{1\} \\
& =2 \frac{4!}{S^{4+1}}-\frac{1}{s-(-5)}+3 \frac{1}{s} \\
& =\frac{48}{s^{5}}-\frac{1}{s+5}+\frac{3}{S}, s>0
\end{aligned}
$$

Examples: Evaluate
(c) $f(t)=(2-t)^{2}=4-4 t+t^{2}$

$$
y\{1\}=\frac{1}{s} \quad y\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}
$$

sio

$$
\begin{aligned}
y\left\{(2-t)^{2}\right\} & =4 \mathcal{L}\{1\}-4 \mathcal{L}\{t\}+\mathcal{L}\left\{t^{2}\right\} \\
& =4 \frac{1}{s}-4 \frac{1!}{s^{\prime+1}}+\frac{2!}{s^{\prime 2+1}} \\
& =\frac{4}{s}-\frac{4}{s^{2}}+\frac{2}{s^{3}}, s>0
\end{aligned}
$$

Sufficient Conditions for Existence of $\mathscr{L}\{f(t)\}$

Definition: Let $c>0$. A function f defined on $[0, \infty)$ is said to be of exponential order c provided there exists positive constants M and T such that $|f(t)|<M e^{c t}$ for all $t>T$.

Definition: A function f is said to be piecewise continuous on an interval $[a, b]$ if f has at most finitely many jump discontinuities on $[a, b]$ and is continuous between each such jump.

Sufficient Conditions for Existence of $\mathscr{L}\{f(t)\}$

Theorem: If f is piecewise continuous on $[0, \infty)$ and of exponential order c for some $c>0$, then f has a Laplace transform for $s>c$.

An example of a function that is NOT of exponential order for any c is $f(t)=e^{t^{2}}$. Note that

$$
f(t)=e^{t^{2}}=\left(e^{t}\right)^{t} \quad \Longrightarrow \quad|f(t)|>e^{c t} \quad \text { whenever } \quad t>c .
$$

This is a function that doesn't have a Laplace transform. We won't be dealing with this type of function here.

Section 14: Inverse Laplace Transforms

Now we wish to go backwards: Given $F(s)$ can we find a function $f(t)$ such that $\mathscr{L}\{f(t)\}=F(s)$?

If so, we'll use the following notation

$$
\mathscr{L}^{-1}\{F(s)\}=f(t) \quad \text { provided } \quad \mathscr{L}\{f(t)\}=F(s)
$$

We'll call $f(t)$ an inverse Laplace transform of $F(s)$.

A Table of Inverse Laplace Transforms

- $\mathscr{L}^{-1}\left\{\frac{1}{s}\right\}=1$
- $\mathscr{L}^{-1}\left\{\frac{n!}{s^{n+1}}\right\}=t^{n}$, for $n=1,2, \ldots$
- $\mathscr{L}^{-1}\left\{\frac{1}{s-a}\right\}=e^{a t}$
- $\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+k^{2}}\right\}=\cos k t$
- $\mathscr{L}^{-1}\left\{\frac{k}{s^{2}+k^{2}}\right\}=\sin k t$

The inverse Laplace transform is also linear so that

$$
\mathscr{L}^{-1}\{\alpha F(s)+\beta G(s)\}=\alpha f(t)+\beta g(t)
$$

Find the Inverse Laplace Transform
When using the table, we have to match the expression inside the brackets $\}$ EXACTLY! Algebra, including partial fraction decomposition, is often needed.
(a) $\mathscr{L}^{-1}\left\{\frac{1}{s^{7}}\right\}$

$$
\mathscr{L}^{-1}\left\{\frac{n!}{s^{n+1}}\right\}=t^{n}
$$

Note $\frac{1}{S^{7}}=\frac{1}{S^{6+1}} \cdot \frac{6!}{6!}=\frac{1}{6!} \frac{6!}{S^{6+1}}$

Example: Evaluate $y^{-1}\left\{\frac{s}{s^{2}+k^{2}}\right\}=\operatorname{cor}(k t), \mathcal{L}^{-1}\left\{\frac{k}{s^{2}+k^{2}}\right\}=\sin (k t)$
(b)

$$
\begin{aligned}
& \mathscr{L}^{-1}\left\{\frac{s+1}{s^{2}+9}\right\} \\
& \frac{s+1}{s^{2}+9}=\frac{s}{s^{2}+9}+\frac{1}{s^{2}+9}=\frac{s}{s^{2}+3^{2}}+\frac{1}{s^{2}+3^{2}} \\
& =\frac{s}{s^{2}+3^{2}}+\frac{1}{3} \frac{3}{s^{2}+3^{2}} \\
& \mathscr{L}^{-1}\left\{\frac{s+1}{s^{2}+9}\right\}=\cos (3 t)+\frac{1}{3} \sin (3 t)
\end{aligned}
$$

