Oct 20 Math 2253 sec. 001 Fall 2014

Section 4.2: The Definite Integral

Definition Let f be defined on an interval $[a, b]$. Let

$$
x_{0}=a<x_{1}<x_{2}<\cdots<x_{n}=b
$$

be any partition of $[a, b]$, and $\left\{x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}\right\}$ be any set of sample points. Then the definite integral of f from a to b is denoted and defined by

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}
$$

provided this limit exists. Here, the limit is taken over all possible partitions of $[a, b]$.

Terms and Notation

- Riemann Sum: any sum of the form $f\left(x_{1}^{*}\right) \Delta x+f\left(x_{2}^{*}\right) \Delta x+\cdots+f\left(x_{n}^{*}\right) \Delta x$
- Integral Symbol/Sign: \int (a stretched "S" for "sum")
- Integrable: If the limit does exists, f is said to be integrable on [a, b]
- Limits of Integration: a is called the lower limit of integration, and b is the upper limit of integration
- Integrand: the expression " $f(x)$ " is called the integrand
- Differential: $d x$ is called a differential, it indicates what the variable is and can be thought of as the limit of Δx (just as it is in the derivative notation " $\frac{d y}{d x}$ ").
- Dummy Variable/Variable of Integration: the variable that appears in both the integrand and in the differential. For example, if the differential is $d x$, the dummy variable is x; it the differential is $d u$, the dummy variable is u

$$
\int_{0}^{b} f(x) d x
$$

Important Remarks

(1) If the integral does exist, it is a number. That is, it does not depend on the dummy variable of integration. The following are equivalent.

$$
\int_{a}^{b} f(x) d x=\int_{a}^{b} f(t) d t=\int_{a}^{b} f(q) d q
$$

(2) The definite integral is a limit of Riemann Sums!
(3) If f is positive and continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=\text { the area under the curve. }
$$

What if f is continuous, but not always positive?

We can equate the integral with an area. Assign a positive sign to a region above the x-axis, and a negative sign to a region below the x-axis.

Figure: $\int_{a}^{b} f(x) d x=$ area of gray region - area of yellow region

Example
Use area to evaluate the integral $\int_{-2}^{1}(|x|-1) d x$.

Gray area

$$
\begin{aligned}
1 母 A & =\frac{1}{2} b h \\
& =\frac{1}{2} \cdot 1 \cdot 1 \\
& =\frac{1}{2}
\end{aligned}
$$

Yellow area

$$
\begin{aligned}
A=\frac{1}{2} b h & =\frac{1}{2} \cdot 2 \cdot 1 \\
& =1
\end{aligned}
$$

$$
\begin{aligned}
\int_{-2}^{1}(|x|-2) d x & =\operatorname{Gray}-Y_{e} l_{o w} \\
& =\frac{1}{2}-1=\frac{-1}{2}
\end{aligned}
$$

Important Theorems:

Theorem: If f is continuous on $[a, b]$ or has only finitely many jump discontinuities on $[a, b]$, then f is integrable on $[a, b]$

Theorem: If f is integrable on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

where

$$
\Delta x=\frac{b-a}{n}, \quad \text { and } \quad x_{i}=a+i \Delta x
$$

Examples:

$$
\begin{array}{cc}
\int_{0}^{2 \pi} \cos x d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \cos \left(\frac{2 \pi i}{n}\right) \frac{2 \pi}{n} & x_{i}=0+i \Delta x \\
f\left(x_{i}\right) & =\frac{2 i \pi}{n} \\
\int_{2}^{4} \sqrt{t} d t=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{2+\frac{2 i}{n}}\left(\frac{2}{n}\right) & \Delta x=\frac{4-2}{n}=\frac{2}{n} \\
f(x i) & x=2+i \Delta x \\
& =2+\frac{2 i}{n} \\
0
\end{array}
$$

Show that $\int_{0}^{b} x d x=\frac{b^{2}}{2}$ by using (i) a Riemann sum ${ }^{1}$ and (ii) geometry.

${ }^{1}$ The following identity is useful

Area

$$
=\frac{1}{2} b^{2}
$$

So

$$
\int_{0}^{b} x d x=\frac{1}{2} b^{2}
$$

Using a Riemann Sum:

$$
\begin{aligned}
& \Delta x=\frac{b-0}{n}=\frac{b}{n} \\
& x_{i}=0+i \Delta x=i \frac{b}{n} \\
& f(x)=x \Rightarrow f\left(x_{i}\right)=i \frac{b}{n} \\
& \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\sum_{i=1}^{n}\left(i \frac{b}{n}\right)\left(\frac{b}{n}\right)
\end{aligned}
$$

$$
=\frac{b^{2}}{n^{2}} \sum_{i=1}^{n} i
$$

Using the identity $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$

$$
\begin{aligned}
\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x & =\frac{b^{2}}{n^{2}} \sum_{i=1}^{n} i \\
& =\frac{b^{2}}{n^{2}} \frac{n(n+1)}{2}=\frac{b^{2}\left(n^{2}+n\right)}{2 n^{2}}
\end{aligned}
$$

Now let $n \rightarrow \infty$

$$
\begin{aligned}
\int_{0}^{b} x d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x \\
& =\lim _{n \rightarrow \infty} \frac{b^{2}\left(n^{2}+n\right)}{2 n^{2}} \\
& =\lim _{n \rightarrow \infty} \frac{b^{2}\left(n^{2}+n\right)}{2 n^{2}} \cdot \frac{\frac{1}{n^{2}}}{\frac{1}{n^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} b^{2}\left(\frac{1+\frac{1}{n}}{2}\right) \\
& =b^{2}\left(\frac{1+0}{2}\right)=\frac{b^{2}}{2}
\end{aligned}
$$

So again we have

$$
\int_{0}^{b} x d x=\frac{b^{2}}{2}
$$

Properties of Definite Integrals

Suppose that f and g are integable on $[a, b]$ and let c be constant.
(1) $\int_{a}^{b} c d x=c(b-a)$
(2) $\int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x$
(3) $\int_{a}^{b}(f(x) \pm g(x)) d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x$

Properties of Definite Integrals Continued...

(4) $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$
(5) $\int_{a}^{a} f(x) d x=0$
(6) $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$

Properties of Definite Integrals Continued...

(7) If $f(x) \leq g(x)$ for $a \leq x \leq b$, then $\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x$
(8) And, as an immediate consequence of (7) and (1), if $m \leq f(x) \leq M$ for $a \leq x \leq b$, then

$$
m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)
$$

