Oct. 21 Math 1190 sec. 51 Fall 2016

Section 4.3: The Mean Value Theorem

The Mean Value Theorem: (MVT) Suppose f is a function that satisfies
i f is continuous on the closed interval $[a, b]$, and
ii f is differentiable on the open interval (a, b).
Then there exists a number c in (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}, \quad \text { equivalently } \quad f(b)-f(a)=f^{\prime}(c)(b-a)
$$

Example
Verify that the function satisfies the hypotheses of the Mean Value Theorem on the given interval. Then find all values of c that satisfy the conclusion of the MVT.

$$
f(x)=x^{3}-2 x, \quad[0,2]
$$

As a polynomid, f is continuous and differentiable on $(-\infty, \infty)$. So it's continuous on $[0,2]$ and differentiable on $(0,2)$.

Here, $a=0$ and $b=2$. We need c such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

$$
\begin{aligned}
& f(x)=x^{3}-2 x \\
& f(b)=f(2) \\
& f(a)=f(0)=2^{3}-2 \cdot 2=4 \\
& \text { so } \quad \frac{f(b)-f(a)}{b-a}=\frac{4-0}{2-0}=2 \\
& f^{\prime}(x)=3 x^{2}-2 \Rightarrow f^{\prime}(c)=3 c^{2}-2 \\
& f^{\prime}(c)=3 c^{2}-2=2 \\
& \Rightarrow 3 c^{2}=4
\end{aligned}
$$

$$
\begin{array}{r}
\Rightarrow \quad c^{2}=\frac{4}{3} \\
\Rightarrow \quad c=\sqrt{\frac{4}{3}}=\frac{2}{\sqrt{3}} \text { or } c=-\sqrt{\frac{4}{3}}=\frac{-2}{\sqrt{3}} \\
\text { ignore, } \gamma \\
\text { it's not in }(0,2)
\end{array}
$$

There is one such C value,

$$
c=\frac{2}{\sqrt{3}} .
$$

Question

Let $f(x)=\sqrt{x-2}$, and let $[a, b]=[2,6]$.
(1) The function f satisfies the hypotheses of the MVT. Determine

$$
\frac{f(b)-f(a)}{b-a}
$$

(a) $\frac{f(b)-f(a)}{b-a}=\frac{2}{3}$
$\frac{f(6)-f(2)}{6 \cdot 2}=\frac{\sqrt{4}-\sqrt{0}}{4}=\frac{2}{4}=\frac{1}{2}$
(b) $\frac{f(b)-f(a)}{b-a}=\frac{3}{2}$
(c) $\frac{f(b)-f(a)}{b-a}=2$
(d) $\frac{f(b)-f(a)}{b-a}=\frac{1}{2}$

Question

Let $f(x)=\sqrt{x-2}$, and let $[a, b]=[2,6]$.
(2) The function f satisfies the hypotheses of the MVT. Determine

$$
\begin{aligned}
& f^{\prime}(x) \\
& f(x)=(x-2)^{\frac{1}{2}}
\end{aligned}
$$

(a) $f^{\prime}(x)=-\sqrt{x-2}$

$$
f^{\prime}(x)=\frac{1}{2}(x-2)^{-1 / 2} \cdot 1
$$

(b) $f^{\prime}(x)=\frac{1}{\sqrt{x-2}}$
(C) $f^{\prime}(x)=\frac{1}{2 \sqrt{x-2}}$
(d) $f^{\prime}(x)=-\frac{1}{2 \sqrt{x-2}}$

Question

Let $f(x)=\sqrt{x-2}$, and let $[a, b]=[2,6]$.

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{2 \sqrt{x-2}} \\
& \frac{f(b)-f(a)}{b-a}=\frac{1}{2}
\end{aligned}
$$

(3) Find all c values guaranteed by the MVT for f on this interval.
(a) $c=\frac{1}{2}$

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

(b) $c=3$ or $c=-3$

$$
\frac{1}{2 \sqrt{c-2}}=\frac{1}{2}
$$

(c) $c=3$ or $c=4$
(d) $c=3$

$$
\begin{aligned}
& \frac{p}{2 \sqrt{c-2}}=1 \\
& \frac{1}{\sqrt{c-2}}=1 \Rightarrow \sqrt{c-2}
\end{aligned}=1 \quad \begin{aligned}
& c-2=1^{2} \\
&=1 \\
& c=3
\end{aligned}
$$

Important Consequence of the MVT

Theorem: If $f^{\prime}(x)=0$ for all x in an interval (a, b), then f is constant on (a, b).

Corollary: If $f^{\prime}(x)=g^{\prime}(x)$ for all x in an interval (a, b), then $f-g$ is constant on (a, b). In other words,
$f(x)=g(x)+C \quad$ where C is some constant.

If $f^{\prime}(x)=g^{\prime}(x)$ for all x in (a, b),
letting $h(x)=f(x)-g(x)$ we set

$$
h^{\prime}(x)=f^{\prime}(x)-g^{\prime}(x)=0
$$

Hence h is constant; $h(x)=C$ for some constant C.
s. $f(x)-g(x)=C \Rightarrow f(x)=g(x)+C$.

Examples
Find all possible functions $f(x)$ that satisfy the condition
(a) $f^{\prime}(x)=\cos x$ on $(-\infty, \infty)$

Todothis, we find one example, then add ar arbitrary constant.

An example would be $\sin x$ since $\frac{d}{d x} \sin x=\cos x$.

$$
f(x)=\sin x+C \quad \text { for any constant } C .
$$

(b) $f^{\prime}(x)=2 x$ on $(-\infty, \infty)$

One example is x^{2} since $\frac{d}{d x} x^{2}=2 x$.

So
$f(x)=x^{2}+C$ where Cis any constant.

* Note $f^{\prime}(x)=\frac{d}{d x}\left(x^{2}+C\right)=2 x+0=2 x$

Question

Find all possible functions $h(t)$ that satisfy the condition
(c) $h^{\prime}(t)=\sec ^{2} t \quad$ on $\quad\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
(a) $h(t)=\sec ^{2} t+C, C$ any constant
(b) $h(t)=\tan t+1$
(C) $h(t)=\tan t+C, C$ any constant

Another Consequence of the MVT

Another significant consequence of the MVT is that it provides a test for the increasing and decreasing behavior of a differentiable function.

Theorem: Let f be differentiable on an open interval (a, b). If

- $f^{\prime}(x)>0$ on (a, b), the f is increasing on (a, b), and
- $f^{\prime}(x)<0$ on (a, b), the f is decreasing on (a, b).

Example
Determine the intervals over which f is increasing and the intervals over which it is decreasing where

$$
f(x)=2 x^{3}-6 x^{2}-18 x+1
$$

The domain is $(-\infty, \infty)$. We ned to know the sign of the $1^{\text {st }}$ derivative.

$$
\begin{aligned}
f^{\prime}(x) & =2\left(3 x^{2}\right)-6(2 x)-18 \\
& =6 x^{2}-12 x-18 \\
& =6\left(x^{2}-2 x-3\right)=6(x-3)(x+1)
\end{aligned}
$$

The sign can change when $f^{\prime}(x)=0$ or where $f^{\prime}(x)$ DUE.
$f^{\prime}(x)$ is defined every where. $f^{\prime}(x)=0$

$$
\Rightarrow \quad 0=6(x-3)(x+1) \Rightarrow \quad x=3 \text { or } x=-1
$$

we divide ow domain by there numbers and Check the sign in each interval.

Test: $f^{\prime}(-2)=6(-2-3)(-2+1)=30$

$$
f^{\prime}(0)=6(0-3)(0+1)=-18
$$

$$
f^{\prime}(4)=6(4-3)(4+1)=30
$$

f is increasingon $(-\infty,-1) \cup(3, \infty)$ f is decreasing on $(-1,3)$.

