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Section 4.3: The Mean Value Theorem

The Mean Value Theorem: (MVT) Suppose f is a function that
satisfies

i f is continuous on the closed interval [a,b], and
ii f is differentiable on the open interval (a,b).

Then there exists a number c in (a,b) such that

f ′(c) =
f (b)− f (a)

b − a
, equivalently f (b)− f (a) = f ′(c)(b − a).



Question
Let f (x) = x sin x , and let [a,b] =

[
0, π2

]
.

This function is continuous on
[
0, π2

]
and differentiable on

(
0, π2

)
.

According to the Mean Value Theorem, there exists a number c in(
0, π2

)
such that f ′(c) equals

(a) π
2

(b) 1

(c) 0

(d) no conclusion can be drawn about the value of f ′(c) for any
number c in

(
0, π2

)
.



Important Consequence of the MVT

Theorem: If f ′(x) = 0 for all x in an interval (a,b),
then f is constant on (a,b).

Corollary: If f ′(x) = g′(x) for all x in an interval
(a,b), then f − g is constant on (a,b). In other words,

f (x) = g(x) + C where C is some constant.





Examples
Find all possible functions f (x) that satisfy the condition

(a) f ′(x) = cos x on (−∞,∞)



(b) f ′(x) = 2x on (−∞,∞)



Question

Find all possible functions h(t) that satisfy the condition

(c) h′(t) = sec2 t on
(
−π

2
,
π

2

)

(a) h(t) = sec2 t + C, C any constant

(b) h(t) = tan t + 1

(c) h(t) = tan t + C, C any constant



Another Consequence of the MVT

Another significant consequence of the MVT is that it provides a test
for the increasing and decreasing behavior of a differentiable function.

Theorem: Let f be differentiable on an open interval (a,b). If

I f ′(x) > 0 on (a,b), the f is increasing on (a,b), and
I f ′(x) < 0 on (a,b), the f is decreasing on (a,b).



Example
Determine the intervals over which f is increasing and the intervals
over which it is decreasing where

f (x) = 2x3 − 6x2 − 18x + 1







Question
Suppose that we compute the derivative of some function g and find

g′(x) = (2 + x)ex/2.

Determine the intervals over which g is increasing and over which it is
decreasing.

(a) g is increasing on (−1/2,∞) and decreasing on (−∞,−1/2).

(b) g is increasing on (−2,∞) and decreasing on (−∞,−2).

(c) g is increasing on (2,∞) and decreasing on (−∞,2).

(d) g is increasing on (−∞,−2) and decreasing on (−2,∞).



Section 4.4: Local Extrema and Concavity

We have already seen that the first derivative f ′ can tell us about the
behaviour of the function f—in particular, it gives information about
where it is increasing or decreasing, and where it may take a local
extreme value.

In this section, we’ll expand on that as well as introduce information
about a function that can be deduced from the nature of its second
derivative.



Theorem: First derivative test for local extrema

Let f be continuous and suppose that c is a critical number of f .
I If f ′ changes from negative to positive at c, then f has a local

minimum at c.
I If f ′ changes from positive to negative at c, then f has a local

maximum at c.
I If f ′ does not change signs at c, then f does not have a local

extremum at c.

Note: we read from left to right as usual when looking for a sign
change.



Figure: First derivative test



Example
Find all the critical points of the function and classify each one as a
local maximum, a local minimum, or neither.

f (x) = x1/3(16− x)








