Oct. 21 Math 1190 sec. 52 Fall 2016

Section 4.3: The Mean Value Theorem

The Mean Value Theorem: (MVT) Suppose f is a function that satisfies
i f is continuous on the closed interval $[a, b]$, and
ii f is differentiable on the open interval (a, b).
Then there exists a number c in (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}, \quad \text { equivalently } \quad f(b)-f(a)=f^{\prime}(c)(b-a)
$$

Question

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Let $f(x)=x \sin x$, and let $[a, b]=\left[0, \frac{\pi}{2}\right]$.
This function is continuous on $\left[0, \frac{\pi}{2}\right]$ and differentiable on $\left(0, \frac{\pi}{2}\right)$. According to the Mean Value Theorem, there exists a number c in $\left(0, \frac{\pi}{2}\right)$ such that $f^{\prime}(c)$ equals
(a) $\frac{\pi}{2}$

$$
\frac{f\left(\frac{\pi}{2}\right)-f(0)}{\frac{\pi}{2}-0}=\frac{\frac{\pi}{2} \sin \frac{\pi}{2}-0 \cdot \sin 0}{\pi / 2}=\frac{\pi / 2}{\pi / 2}=1
$$

(b) 1
(c) 0
(d) no conclusion can be drawn about the value of $f^{\prime}(c)$ for any number c in $\left(0, \frac{\pi}{2}\right)$.

Important Consequence of the MVT

Theorem: If $f^{\prime}(x)=0$ for all x in an interval (a, b), then f is constant on (a, b).

Corollary: If $f^{\prime}(x)=g^{\prime}(x)$ for all x in an interval (a, b), then $f-g$ is constant on (a, b). In other words,
$f(x)=g(x)+C \quad$ where C is some constant.

If $f^{\prime}(x)=g^{\prime}(x)$ for all x in (a, b), letting $h(x)=f(x)-g(x)$ we hove

$$
h^{\prime}(x)=f^{\prime}(x)-g^{\prime}(x)=0 \text { for all } x \text { in }(a, b) \text {. }
$$

Then h is constant, i.e, $h(x)=C$ for some constant C. So

$$
f(x)-g(x)=C \Rightarrow f(x)=g(x)+C
$$

Examples
Find all possible functions $f(x)$ that satisfy the condition
(a) $f^{\prime}(x)=\cos x$ on $(-\infty, \infty)$
we find one example function, then set all possible functions by adding an arbitrary constant. An example is $\sin x$ since $\frac{d}{d x} \sin x=\cos x$.

Thus $f(x)=\sin x+C$ for any constant C.
Check: $\quad f^{\prime}(x)=\frac{d}{d x}(\sin x+C)=\cos x+0=\cos x$
(b) $f^{\prime}(x)=2 x$ on $(-\infty, \infty)$
x^{2} is an example since $\frac{d}{d x} x^{2}=2 x$
All functions an of the form

$$
f(x)=x^{2}+C \text { for any constant } C
$$

Question

Find all possible functions $h(t)$ that satisfy the condition
(c) $h^{\prime}(t)=\sec ^{2} t$ on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
(a) $h(t)=\sec ^{2} t+C, C$ any constant
(b) $h(t)=\tan t+1$
(C) $h(t)=\tan t+C, C$ any constant

Another Consequence of the MVT

Another significant consequence of the MVT is that it provides a test for the increasing and decreasing behavior of a differentiable function.

Theorem: Let f be differentiable on an open interval (a, b). If

- $f^{\prime}(x)>0$ on (a, b), the f is increasing on (a, b), and
- $f^{\prime}(x)<0$ on (a, b), the f is decreasing on (a, b).

Example
Determine the intervals over which f is increasing and the intervals over which it is decreasing where

$$
f(x)=2 x^{3}-6 x^{2}-18 x+1
$$

The domain is all reals. we need to detanine where $f^{\prime}(x)>0$ and where $f^{\prime}(x)<0$.
We find where $f^{\prime}(x)=0$ or where $f^{\prime}(x)$ is undefined, and determine it's sign in the intervals defined by those numbers.

$$
\begin{aligned}
f^{\prime}(x) & =2\left(3 x^{2}\right)-6(2 x)-18 \\
& =6 x^{2}-12 x-18
\end{aligned}
$$

$$
\begin{aligned}
f^{\prime}(x) & =6\left(x^{2}-2 x-3\right) \\
& =6(x-3)(x+1)
\end{aligned}
$$

$f^{\prime}(x)$ is always detined.

$$
\begin{aligned}
f^{\prime}(x) & =0 \Rightarrow 0=6(x-3)(x+1) \\
& \Rightarrow x=3 \text { or } x=-1
\end{aligned}
$$

$$
f^{\prime}(x)=6(x-3)(x+1)
$$

Test:

$$
\begin{aligned}
& f^{\prime}(-2)=6(-2-3)(-2+1)=30 \\
& f^{\prime}(0)=6(0-3)(0+1)=-18 \\
& f^{\prime}(4)=6(4-3)(4+1)=30
\end{aligned}
$$

f is increasing on $(-\infty,-1) \cup(3, \infty)$.
f is decuosing on $(-1,3)$.

Question

Suppose that we compute the derivative of some function g and find

$$
g^{\prime}(x)=(2+x) e^{x / 2}
$$

$$
\begin{aligned}
& \text { Dorain is } \\
& \qquad(-\infty, \infty)
\end{aligned}
$$

Determine the intervals over which g is increasing and over which it is decreasing.

(a) g is increasing on $(-1 / 2, \infty)$ and decreasing on $(-\infty,-1 / 2)$.
(b) g is increasing on $(-2, \infty)$ and decreasing on $(-\infty,-2)$.
(c) g is increasing on $(2, \infty)$ and decreasing on $(-\infty, 2)$.
(d) g is increasing on $(-\infty,-2)$ and decreasing on $(-2, \infty)$.

Section 4.4: Local Extrema and Concavity

We have already seen that the first derivative f^{\prime} can tell us about the behaviour of the function f-in particular, it gives information about where it is increasing or decreasing, and where it may take a local extreme value.

In this section, we'll expand on that as well as introduce information about a function that can be deduced from the nature of its second derivative.

Theorem: First derivative test for local extrema

Let f be continuous and suppose that c is a critical number of f.

- If f^{\prime} changes from negative to positive at c, then f has a local minimum at c.
- If f^{\prime} changes from positive to negative at c, then f has a local maximum at c.
- If f^{\prime} does not change signs at c, then f does not have a local extremum at c.

Note: we read from left to right as usual when looking for a sign change.

Figure: First derivative test

Example
Find all the critical points of the function and classify each one as a local maximum, a local minimum, or neither.

$$
f(x)=x^{1 / 3}(16-x) \quad \text { Domain ir }(-\infty, \infty) .
$$

Find all criticd numbers:

$$
\begin{aligned}
f(x) & =16 x^{1 / 3}-x^{4 / 3} \\
f^{\prime}(x) & =16\left(\frac{1}{3} x^{-2 / 3}\right)-\frac{4}{3} x^{1 / 3} \\
& =\frac{16}{3 x^{2 / 3}}-\frac{4 x^{1 / 3}}{3} \cdot \frac{x^{2 / 3}}{x^{2 / 3}} \\
& =\frac{16}{3 x^{2 / 3}}-\frac{4 x}{3 x^{2 / 3}}=\frac{16-4 x}{3 x^{2 / 3}}
\end{aligned}
$$

$$
f^{\prime}(x)=0 \quad \text { if } \quad 16-4 x=0 \Rightarrow 4 x=16 \Rightarrow x=4
$$

$f^{\prime}(x)$ is undefined if $3 x^{2 / 3}=0 \Rightarrow x=0$

Wéll do our sign ondysis

$$
\begin{aligned}
f^{\prime}(x)=\frac{4(4-x)}{3 x^{2 / 3}} \quad \text { Test: } f^{\prime}(-1) & =\frac{4(4-(-1))}{3(-1)^{2 / 3}}=\frac{20}{3} \\
f^{\prime}(1) & =\frac{4(4-1)}{3(1)^{2 / 3}}=4
\end{aligned}
$$

$$
f^{\prime}(8)=\frac{4(4-8)}{3(8)^{2 / 3}}=\frac{-16}{12}=\frac{-4}{3}
$$

Classify the criticd points:
f^{\prime} doesnt change sighs $\&$ geo. It's not the location of a max or min.
f^{\prime} changes from positive to negative $\subset 4$. f hes a local maximum (a $x=4$.

The locel maximun value is

$$
f(4)=4^{1 / 3}(16-4)=12 \sqrt[3]{4}
$$

