October 21 Math 2306 sec 51 Fall 2015

Section 7.1: The Laplace Transform

Definition: Let $f(t)$ be defined on $[0, \infty)$. The Laplace transform of f is denoted and defined by

$$
\mathscr{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t=F(s) .
$$

The domain of the transformation $F(s)$ is the set of all s such that the integral is convergent.

Note: The kernel for the Laplace transform is $K(s, t)=e^{-s t}$.

Find the Laplace transform of $f(t)=1$
By definition

$$
\mathcal{L}\{1\}=\int_{0}^{\infty} e^{-s t} \cdot 1 d t
$$

If $s=0$, then $e^{-s t}=e^{0}=1$ and $\int_{0}^{\infty} d t$ which diverges
For $s \neq 0$

$$
\begin{aligned}
\mathscr{L}\{1\} & =\int_{0}^{\infty} e^{-s t} d t \\
& =\lim _{b \rightarrow \infty} \int_{0}^{b} e^{-s t} d t=\left.\lim _{b \rightarrow A} \frac{1}{-s} e^{-s t}\right|_{0} ^{b}
\end{aligned}
$$

$$
\begin{aligned}
&=\frac{-1}{s} \lim _{b \rightarrow \infty}\left(e^{-s b}-e^{0}\right) \quad \begin{array}{c}
\begin{array}{c}
\text { Diverge } \\
\text { if } \\
s<0
\end{array} \\
\text { for } s>0
\end{array} \\
&=\frac{-1}{s}(0-1) \\
&=\frac{1}{s} \text { for } s>0 \\
& \mathscr{Q}\{1\}=\frac{1}{s} \quad \text { with domain } s>0 .
\end{aligned}
$$

Find the Laplace transform of $f(t)=t$
By definition

$$
y\{t\}=\int_{0}^{\infty} e^{-s t} t d t
$$

is $s=0, e^{-s t}=1$ and $\int_{0}^{\infty} t d t$ is divergent.
Fir $s \neq 0$

$$
\begin{aligned}
y\{t\} & =\int_{0}^{\infty} e^{-s t} t d t \\
& =-\left.\frac{1}{s} t e^{-s t}\right|_{0} ^{\infty}+\frac{1}{s} \int_{0}^{\infty} e^{-s t} d t
\end{aligned}
$$

Int by parts $u=t \quad d u=d t$

$$
u=t \quad\left(\frac{1}{s} e^{-s t} d v=e^{-s t} d t\right.
$$

$$
\begin{aligned}
& \operatorname{for}_{s>0}=-\frac{1}{s}\left(0-0 \cdot e^{0}\right)+\frac{1}{s} \int_{0}^{\infty} e^{-s t} d t \\
&K\{1\}\} \\
&=\frac{1}{s}\left(\frac{1}{s}\right)=\frac{1}{s^{2}}
\end{aligned}
$$

So $\mathscr{L}\{t\}=\frac{1}{s^{2}}$, for $s>0$

Find the Laplace transform of $f(t)=e^{a t}, a \neq 0$
By definition

$$
\begin{aligned}
y\left\{e^{a t}\right\} & =\int_{0}^{\infty} e^{-s t} \cdot e^{a t} d t \\
& =\int_{0}^{\infty} e^{-(s-a) t} d t
\end{aligned}
$$

If $s=a, e^{-(s-a) t}=e^{0}=1$ and the integer d

For $s \neq a y\left\{e^{a t}\right\}=\int_{0}^{\infty} e^{-(s-a) t} d t$

$$
\begin{aligned}
& =\left.\frac{1}{-(s-a)} e^{-(s-a) t}\right|_{0} ^{\infty} \\
\text { For } s-a>0 & =\frac{-1}{s-a}\left(0-e^{0}\right)=\frac{1}{s-a}
\end{aligned}
$$

Hence $\mathcal{Z}\left\{e^{a t}\right\}=\frac{1}{s-a}$, for $s>a$

Find the Laplace transform ${ }^{1}$ of $f(t)=\sin t$
By definition

$$
y\{\sin t\}=\int_{0}^{\infty} e^{-s t} \sin t d t
$$

If $s=0, \quad \int_{0}^{\infty} \sin t d t$ divages
For $s \neq 0$

$$
\mathcal{L}\{\sin t\}=\int_{0}^{\infty} e^{-s t} \sin t d t
$$

${ }^{1}$ The following is immensely useful!

$$
\int e^{\alpha t} \sin (\beta t) d t=\frac{e^{\alpha t}}{\alpha^{2}+\beta^{2}}(\alpha \sin (\beta t)-\beta \cos (\beta t))
$$

$$
\begin{aligned}
\mathscr{L}\{\sin t\} & =\int_{0}^{\infty} e^{-s t} \sin t d t \\
& =\left.\frac{e^{-s t}}{(-s)^{2}+1^{2}}(-s \sin t-\cos t)\right|_{0} ^{\infty}
\end{aligned}
$$

for

$$
\begin{aligned}
s>0 & =0-\frac{e^{0}}{s^{2}+1}(-s \sin 0-\cos 0) \\
& =\frac{-1}{s^{2}+1}(-1)=\frac{1}{s^{2}+1}
\end{aligned}
$$

Hence

$$
y\{\sin t\}=\frac{1}{s^{2}+1}, \quad s>0
$$

A piecewise defined function
Find the Laplace transform of f defined by

$$
f(t)= \begin{cases}2 t, & 0 \leq t<10 \\ 0, & t \geq 10\end{cases}
$$

By definition

$$
\begin{aligned}
y\{f(t)\} & =\int_{0}^{\infty} e^{-s t} f(t) d t \\
& =\int_{0}^{10} e^{-s t} f(t) d t+\int_{10}^{\infty} e^{-s t} f(t) d t \\
& =\int_{0}^{10} e^{-s t}(2 t) d t+\int_{10}^{\infty} \underbrace{-s t} \cdot 0 d t
\end{aligned}
$$

$$
\begin{aligned}
& =-\left.\frac{2 t}{s} e^{-s t}\right|_{0} ^{10}+\frac{2}{s} \int_{0}^{10} e^{-s t} d t \quad u=2 t \quad \operatorname{lnt} \quad d u=2 d t \\
& =\frac{-2 t}{s} e^{-s t}-\left.\frac{2}{s^{2}} e^{-s t}\right|_{0} ^{10} \quad v=\frac{-1}{s} e^{-s t} d v=e^{-s t} d t \\
& =\frac{-20}{s} e^{-10 s}-\frac{2}{s^{2}} e^{-10 s}-\left(0-\frac{2}{s^{2}} e^{0}\right) \quad \text { for } s \neq 0 \\
& =\frac{2}{s^{2}}-\frac{20}{s} e^{-10 s}-\frac{2}{s^{2}} c^{-10 s} \quad \text { for } s \neq 0
\end{aligned}
$$

If $s=0$,

$$
y\{f(t)\}=\int_{0}^{10} 2 t d t=\left.t^{2}\right|_{0} ^{10}=100-0=100
$$

The Laplace Transform is a Linear Transformation

Some basic results include:

- $\mathscr{L}\{\alpha f(t)+\beta \boldsymbol{g}(t)\}=\alpha F(s)+\beta G(s)$
- $\mathscr{L}\{1\}=\frac{1}{s}, \quad s>0$
- $\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}, \quad s>0$ for $n=1,2, \ldots$
- $\mathscr{L}\left\{e^{a t}\right\}=\frac{1}{s-a}, \quad s>a$
- $\mathscr{L}\{\cos k t\}=\frac{s}{s^{2}+k^{2}}, \quad s>0$
- $\mathscr{L}\{\sin k t\}=\frac{k}{s^{2}+k^{2}}, \quad s>0$

Use the Table to Evaluate $\mathscr{L}\{f(t)\}$
(a)

$$
\begin{aligned}
& f(t)=2 t^{2}+e^{6 t} \\
& \mathcal{L}\left\{2 t^{2}+e^{6 t}\right\}=2 \mathscr{L}\left\{t^{2}\right\}+\mathcal{L}\left\{e^{6 t}\right\} \\
&=2\left(\frac{2!}{s^{3}}\right)+\frac{1}{s-6}=\frac{4}{s^{3}}+\frac{1}{s-6} \text { for } s>6 \\
& s>0 \\
& s>6
\end{aligned}
$$

(b)

$$
\begin{aligned}
& f(t)=\cos 2 t-\sin 3 t \\
& \mathscr{L}\{\cos 2 t-\sin 3 t\}=\mathcal{L}\{\cos 2 t\}-\mathcal{L}\{\sin 3 t\} \\
&=\frac{s}{s^{2}+2^{2}}-\frac{3}{s^{2}+3^{2}}=\frac{s}{s^{2}+4}-\frac{3}{s^{2}+9}, s>0 \\
& s>0 \quad s>0
\end{aligned}
$$

(c)

$$
\begin{aligned}
& f(t)=(2-t)^{2}=4-4 t+t^{2} \\
& \mathcal{L}\left\{(2-t)^{2}\right\}=\mathcal{L}\left\{4-4 t+t^{2}\right\}=4 \mathcal{L}\{1\}-4 \mathcal{L}\{t\}+\mathcal{L}\left\{t^{2}\right\} \\
&=4\left(\frac{1}{s}\right)-4\left(\frac{1}{s^{2}}\right)+\frac{2}{s^{3}}=\frac{4}{5}-\frac{4}{s^{2}}+\frac{2}{s^{3}} \\
& \quad \text { s>o } \quad s>0 \quad s>0 \quad \text { for } s>0 .
\end{aligned}
$$

(d) $f(t)=\sin ^{2} 5 t$ (Inthe interest of completeness) $=\frac{1}{2}-\frac{1}{2} \cos 10 t$

$$
\begin{aligned}
\mathcal{L}\left\{\frac{1}{2}-\frac{1}{2} \cos 10 t\right\} & =\frac{1}{2} \mathcal{L}\{1\}-\frac{1}{2} \mathcal{L}\{\cos 10 t\} \quad \text { for } s>0 \\
& =\frac{1}{2}\left(\frac{1}{5}\right)-\frac{1}{2} \frac{s}{s^{2}+10^{2}}=\frac{1}{2 s}-\frac{s}{2\left(s^{2}+100\right)}
\end{aligned}
$$

