October 21 Math 2306 sec 54 Fall 2015

Section 7.1: The Laplace Transform

Definition: Let $f(t)$ be defined on $[0, \infty)$. The Laplace transform of f is denoted and defined by

$$
\mathscr{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t=F(s) .
$$

The domain of the transformation $F(s)$ is the set of all s such that the integral is convergent.

Note: The kernel for the Laplace transform is $K(s, t)=e^{-s t}$.

Find the Laplace transform of $f(t)=1$
By definition $\mathcal{L}\{1\}=\int_{0}^{\infty} e^{-s t} \cdot 1 d t$
If $s=0, e^{-s t}=e^{0}=1, \quad \int_{0}^{\infty} 1 d t$ diverges 3 woo is not in the domain of $2\{1\}$

For $s \neq 0$,

$$
\begin{aligned}
y^{\prime}\{1\} & =\int_{0}^{\infty} e^{-s t} d t=\lim _{b \rightarrow \infty} \int_{0}^{b} e^{-s t} d t \\
& =\left.\lim _{b \rightarrow \infty} \frac{1}{-s} e^{-s t}\right|_{0} ^{b}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{b \rightarrow \infty} \frac{-1}{s}\left(e^{-s b}-e^{0}\right) \quad \begin{array}{c}
\text { Divengent if } \\
s<0
\end{array} \\
\text { for } s \rightarrow 0 & =\frac{-1}{s}(0-1)=\frac{1}{s}
\end{aligned}
$$

So $\mathscr{L}\{1\}=\frac{1}{S}$ with domain $S>0$.

Find the Laplace transform of $f(t)=t$
By definition $y\{t\}=\int_{0}^{\infty} e^{-s t} t d t$
If $s=0$, the integral is $\int_{0}^{\infty} t d t$ which $\begin{gathered}\text { diverges }\end{gathered}$
For $s \neq 0, y\{t\}=\int_{0}^{\infty} e^{-s t} t d t$
Integrate by Ports

$$
=-\left.\frac{1}{s} t e^{-s t}\right|_{0} ^{\infty}+\frac{1}{s} \int_{0}^{\infty} e^{-s t} d t
$$

$$
\begin{array}{cc}
u=t \quad d u=d t \\
v=\frac{1}{5} e^{-s t} \quad d v=e^{-5 t} d t
\end{array}
$$

$$
\begin{aligned}
\text { for } & =\frac{-1}{s}\left(0-0 \cdot e^{0}\right)+\frac{1}{s} \underbrace{\int_{0}^{\infty} e^{-s t} d t}_{\mathcal{L}\{1\}} \\
& =\frac{1}{s}\left(\frac{1}{s}\right)=\frac{1}{s^{2}}
\end{aligned}
$$

Hence $\mathscr{L}\{t\}=\frac{1}{s^{2}}$ for $s>0$

Find the Laplace transform of $f(t)=e^{a t}, a \neq 0$
By definition

$$
\begin{aligned}
& \text { Definition } \\
& y\left\{e^{a t}\right\}=\int_{0}^{\infty} e^{-s t} \cdot e^{a t} d t=\int_{0}^{\infty} e^{-(s-a) t} d t
\end{aligned}
$$

If $s=a$, the integrel $\int_{0}^{\infty} d t$ is divagent.
For $s \neq a$

$$
\begin{aligned}
y\left\{e^{a t}\right\} & =\int_{0}^{\infty} e^{-(s-a) t} d t \\
& =\left.\frac{1}{-(s-a)} e^{-(s-a) t}\right|_{0} ^{\infty}
\end{aligned}
$$

for

$$
\begin{aligned}
s-a>0 & =\frac{-1}{s-a}\left(0-e^{0}\right) \\
& =\frac{1}{s-a} \\
y\left\{e^{a t\}}\right. & =\frac{1}{s-a}, \text { for } s>a
\end{aligned}
$$

Find the Laplace transform ${ }^{1}$ of $f(t)=\sin t$

$$
\begin{aligned}
& \begin{array}{c}
\mathcal{Z}\{\sin t\}=\int_{0}^{\infty} e^{-s t} \sin t d t \quad \int_{0}^{\infty} \sin t d t \text { diverges } \\
\text { For } s \neq 0 \quad \chi\{\sin t\}=\int_{0}^{\infty} e^{-s t} \sin t d t \\
\\
=\left.\frac{e^{-s t}}{(-s)^{2}+1^{2}}(-s \sin t-\cos t)\right|_{0} ^{\infty}
\end{array}
\end{aligned}
$$

${ }^{1}$ The following is immensely useful!

$$
\int e^{\alpha t} \sin (\beta t) d t=\frac{e^{\alpha t}}{\alpha^{2}+\beta^{2}}(\alpha \sin (\beta t)-\beta \cos (\beta t))
$$

$$
\begin{aligned}
\text { For } s>0 \quad & =0-\frac{e^{0}}{s^{2}+1}(-s \sin 0-\cos 0) \\
& =\frac{-1}{s^{2}+1}(0-1) \\
& =\frac{1}{s^{2}+1} \\
& \mathscr{y}\{\sin t\}=\frac{1}{s^{2}+1} \quad \text { for } s>0
\end{aligned}
$$

