October 23 Math 2306 sec 51 Fall 2015

Section 7.1: The Laplace Transform

Definition: Let $f(t)$ be defined on $[0, \infty)$. The Laplace transform of f is denoted and defined by

$$
\mathscr{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t=F(s)
$$

The domain of the transformation $F(s)$ is the set of all s such that the integral is convergent.

The Laplace Transform is a Linear Transformation

Some basic results include:

- $\mathscr{L}\{\alpha f(t)+\beta \boldsymbol{g}(t)\}=\alpha F(s)+\beta G(s)$
- $\mathscr{L}\{1\}=\frac{1}{s}, \quad s>0$
- $\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}, \quad s>0$ for $n=1,2, \ldots$
- $\mathscr{L}\left\{e^{a t}\right\}=\frac{1}{s-a}, \quad s>a$
- $\mathscr{L}\{\cos k t\}=\frac{s}{s^{2}+k^{2}}, \quad s>0$
- $\mathscr{L}\{\sin k t\}=\frac{k}{s^{2}+k^{2}}, \quad s>0$

Use the Table to Evaluate $\mathscr{L}\{f(t)\}$
Recall
(d) $f(t)=\sin ^{2} 5 t$

$$
\sin ^{2} \theta=\frac{1}{2}-\frac{1}{2} \cos 2 \theta
$$

$$
\begin{aligned}
f(t)=\frac{1}{2} & -\frac{1}{2} \operatorname{Cos}(10 t) \\
y\{f(t)\} & =\mathcal{L}\left\{\frac{1}{2}-\frac{1}{2} \operatorname{Cos}(10 t)\right\} \\
& =\frac{1}{2} \mathscr{Y}\{1\}-\frac{1}{2} \mathcal{L}\{\cos (10 t)\} \\
& =\frac{1}{2} \frac{1}{s}-\frac{1}{2} \frac{s}{s^{2}+10^{2}}=\frac{1}{2 s}-\frac{s}{2\left(s^{2}+100\right)}, s>0
\end{aligned}
$$

Hyperbolic Sine and Cosine
Define the hyperbolic sine and cosine functions

$$
\sinh (t)=\frac{e^{t}-e^{-t}}{2}, \quad \text { and } \quad \cosh (t)=\frac{e^{t}+e^{-t}}{2}, \quad \text { respectively. }
$$

Find the Laplace transforms of $\sinh t$ and $\cosh t$.

$$
\begin{aligned}
\mathcal{L}\{\sinh (t)\} & =\mathcal{L}\left\{\frac{1}{2} e^{t}-\frac{1}{2} e^{-t}\right\} \\
& =\frac{1}{2} \mathcal{L}\left\{e^{t}\right\}-\frac{1}{2} \mathcal{L}\left\{e^{-t}\right\} \\
& =\frac{1}{2} \frac{1}{s-1}-\frac{1}{2} \frac{1}{s-(-1)}=\frac{1}{2}\left(\frac{1}{s-1}-\frac{1}{s+1}\right) \\
& \quad s>1 \quad \text { for } s>1
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{y}\{\sinh t\} & =\frac{1}{2}\left(\frac{s+1-(s-1)}{(s+1)(s-1)}\right)=\frac{1}{2} \frac{2}{s^{2}-1} \\
\begin{array}{l}
\mathcal{L}\{\cosh t\}
\end{array} & =\mathcal{L}\left\{\frac{1}{2} e^{t}+\frac{1}{2} e^{-t}\right\} \\
& =\frac{1}{2} \frac{1}{s-1}+\frac{1}{2} \frac{1}{s+1} \quad s>1 \\
& =\frac{1}{2}\left(\frac{s+1+s-1}{(s+1)(s-1)}\right)=\frac{1}{2} \frac{2 s}{s^{2}-1}
\end{aligned}
$$

$$
\begin{aligned}
& y\{\sinh t\}=\frac{1}{s^{2}-1}, s>1 \\
& y\{\cosh t\}=\frac{s}{s^{2}-1}, s>1
\end{aligned}
$$

Sufficient Conditions for Existence of $\mathscr{L}\{f(t)\}$

Definition: Let $c>0$. A function f defined on $[0, \infty)$ is said to be of exponential order c provided there exists positive constants M and T such that $|f(t)|<M e^{c t}$ for all $t>T$.

Definition: A function f is said to be piecewise continuous on an interval $[a, b]$ if f has at most finitely many jump discontinuities on $[a, b]$ and is continuous between each such jump.

Sufficient Conditions for Existence of $\mathscr{L}\{f(t)\}$

Theorem: If f is piecewise continuous on $[0, \infty)$ and of exponential order c for some $c>0$, then f has a Laplace transform for $s>c$.
some functions doubt have Lap le u transforms

$$
f(t)=\frac{1}{t}
$$

Section 7.2: Inverse Transforms and Derivatives

Now we wish to go backwards: Given $F(s)$ can we find a function $f(t)$ such that $\mathscr{L}\{f(t)\}=F(s)$?

If so, we'll use the following notation

$$
\mathscr{L}^{-1}\{F(s)\}=f(t) \Longleftrightarrow \mathscr{L}\{f(t)\}=F(s)
$$

We'll call $f(t)$ the inverse Laplace transform of $F(s)$.

A Table of Inverse Laplace Transforms

- $\mathscr{L}^{-1}\left\{\frac{1}{s}\right\}=1$
- $\mathscr{L}^{-1}\left\{\frac{n!}{s^{n+1}}\right\}=t^{n}$, for $n=1,2, \ldots$
- $\mathscr{L}^{-1}\left\{\frac{1}{s-a}\right\}=e^{a t}$
- $\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+k^{2}}\right\}=\cos k t$
- $\mathscr{L}^{-1}\left\{\frac{k}{s^{2}+k^{2}}\right\}=\sin k t$

The inverse Laplace transform is also linear so that

$$
\mathscr{L}^{-1}\{\alpha F(s)+\beta G(s)\}=\alpha f(t)+\beta g(t)
$$

Find the Inverse Laplace Transform
When using the table, we have to match the expression inside the brackets $\}$ EXACTLY! Algebra, including partial fraction decomposition, is often needed.

From the table
(a) $\mathscr{L}^{-1}\left\{\frac{1}{s^{7}}\right\}$

$$
y^{-1}\left\{\frac{6!}{s^{7}}\right\}=t^{6}
$$

Note $\frac{1}{s^{7}}=\frac{1}{6!} \frac{6!}{s^{7}}$

$$
\begin{aligned}
& \mathcal{L}^{-1}\left\{\frac{1}{s^{7}}\right\}=\mathcal{L}^{-1}\left\{\frac{1}{6!} \frac{6!}{s^{7}}\right\} \\
& =\frac{1}{6!} \mathcal{L}^{-1}\left\{\frac{6!}{s^{7}}\right\}=\frac{1}{6!} t^{6}
\end{aligned}
$$

Example: Evaluate
(b)

$$
\begin{aligned}
& \mathscr{L}^{-1}\left\{\frac{s+1}{s^{2}+9}\right\}=\mathcal{L}^{-1}\left\{\frac{s}{s^{2}+9}+\frac{1}{s^{2}+9}\right\} \\
& =\mathcal{Y}^{-1}\left\{\frac{s}{s^{2}+9}\right\}+\mathcal{L}^{-1}\left\{\frac{1}{s^{2}+9}\right\} \\
& =\mathcal{L}^{-1}\left\{\frac{s}{s^{2}+3^{2}}\right\}+\mathcal{L}^{-1}\left\{\frac{1}{3} \frac{3}{s^{2}+3^{2}}\right\} \\
& \quad=\mathcal{L}^{-1}\left\{\frac{s}{s^{2}+3^{2}}\right\}+\frac{1}{3} \mathcal{L}^{-1}\left\{\frac{3}{s^{2}+3^{2}}\right\}=\cos 3 t+\frac{1}{3} \sin 3 t
\end{aligned}
$$

