October 23 Math 2306 sec 51 Fall 2015

Section 7.1: The Laplace Transform

Definition: Let f(t) be defined on $[0, \infty)$. The Laplace transform of f is denoted and defined by

$$\mathscr{L}{f(t)} = \int_0^\infty e^{-st} f(t) dt = F(s).$$

The domain of the transformation F(s) is the set of all s such that the integral is convergent.

The Laplace Transform is a Linear Transformation

Some basic results include:

$$\mathscr{L}\{\alpha f(t) + \beta g(t)\} = \alpha F(s) + \beta G(s)$$

$$\mathcal{L}\{1\} = \frac{1}{s}, \quad s > 0$$

•
$$\mathscr{L}\{t^n\} = \frac{n!}{s^{n+1}}, \quad s > 0 \text{ for } n = 1, 2, ...$$

•
$$\mathscr{L}\lbrace e^{at}\rbrace = \frac{1}{s-a}, \quad s>a$$

•
$$\mathscr{L}\{\sin kt\} = \frac{k}{s^2 + k^2}, \quad s > 0$$

Use the Table to Evaluate $\mathcal{L}\{f(t)\}$

(d)
$$f(t) = \sin^2 5t$$

Recall

 $Sin^2 0 = \frac{1}{2} - \frac{1}{2} \cos 20$
 $f(t) = \frac{1}{2} - \frac{1}{2} \cos (10t)$
 $g\{f(t)\} = g\{\frac{1}{2} - \frac{1}{2} \cos (10t)\}$
 $f(t) = \frac{1}{2} g\{f(t)\} = g\{f(t)\}$
 $f(t) = \sin^2 5t$

Recall

 $f(t) = \sin^2 5t$
 $f(t) = \frac{1}{2} - \frac{1}{2} \cos (10t)$

 $= \frac{7}{7} \frac{2}{1} - \frac{3}{1} \frac{2}{1} + \frac{3}{105} = \frac{32}{1} - \frac{3(2510)}{2}$

Hyperbolic Sine and Cosine

Define the hyperbolic sine and cosine functions

$$\sinh(t) = \frac{e^t - e^{-t}}{2}$$
, and $\cosh(t) = \frac{e^t + e^{-t}}{2}$, respectively.

Find the Laplace transforms of sinh *t* and cosh *t*.

$$Y \left\{ S_{in}ht \right\} = \frac{1}{2} \left(\frac{S+1-(S-1)}{(S+1)(S-1)} \right) = \frac{1}{2} \frac{2}{S^2-1}$$

$$\mathcal{L}\left\{Sinht\right\} = \frac{1}{S^{2}-1}$$
, S>1

October 21, 2015 6 / 46

Sufficient Conditions for Existence of $\mathcal{L}\{f(t)\}\$

Definition: Let c > 0. A function f defined on $[0, \infty)$ is said to be of *exponential order c* provided there exists positive constants M and T such that $|f(t)| < Me^{ct}$ for all t > T.

Definition: A function f is said to be *piecewise continuous* on an interval [a, b] if f has at most finitely many jump discontinuities on [a, b] and is continuous between each such jump.

Sufficient Conditions for Existence of $\mathcal{L}\{f(t)\}\$

Theorem: If f is piecewise continuous on $[0, \infty)$ and of exponential order c for some c > 0, then f has a Laplace transform for s > c.

some functions don't have Lop law transforms
$$f(t): \frac{1}{t}.$$

Section 7.2: Inverse Transforms and Derivatives

Now we wish to go *backwards*: Given F(s) can we find a function f(t) such that $\mathcal{L}\{f(t)\} = F(s)$?

If so, we'll use the following notation

$$\mathscr{L}^{-1}{F(s)} = f(t) \iff \mathscr{L}{f(t)} = F(s).$$

We'll call f(t) the inverse Laplace transform of F(s).

A Table of Inverse Laplace Transforms

$$\mathcal{L}^{-1}\left\{\frac{1}{s}\right\} = 1$$

•
$$\mathscr{L}^{-1}\left\{\frac{n!}{s^{n+1}}\right\} = t^n$$
, for $n = 1, 2, ...$

$$\mathcal{L}^{-1}\left\{\frac{s}{s^2+k^2}\right\} = \cos kt$$

$$\mathcal{L}^{-1}\left\{\frac{k}{s^2+k^2}\right\} = \sin kt$$

The inverse Laplace transform is also linear so that

$$\mathscr{L}^{-1}\{\alpha F(s) + \beta G(s)\} = \alpha f(t) + \beta g(t)$$

Find the Inverse Laplace Transform

When using the table, we have to match the expression inside the brackets {} **EXACTLY**! Algebra, including partial fraction decomposition, is often needed.

(a)
$$\mathcal{L}^{-1}\left\{\frac{1}{s^{7}}\right\}$$

Note $\frac{1}{s^{7}} = \frac{1}{6!} \frac{6!}{s^{7}}$
 $\frac{1}{5^{7}} = \frac{1}{6!} \frac{6!}{s^{7}} = \frac{1}{5^{7}} \frac$

Example: Evaluate

(b)
$$\mathcal{L}^{-1}\left\{\frac{s+1}{s^2+9}\right\} : \mathcal{J}'\left\{\frac{s}{s^2+q} + \frac{1}{s^2+q}\right\}$$

$$= \mathcal{J}''\left\{\frac{s}{s^2+q}\right\} + \mathcal{J}''\left\{\frac{1}{s^2+q}\right\}$$

$$= \mathcal{J}''\left\{\frac{s}{s^2+3^2}\right\} + \mathcal{J}''\left\{\frac{1}{3} + \frac{3}{s^2+3^2}\right\}$$

$$= \mathcal{J}''\left\{\frac{s}{s^2+3^2}\right\} + \frac{1}{3}\mathcal{J}''\left\{\frac{3}{s^2+3^2}\right\} = C_{0s}3t + \frac{1}{3}S_{1n}3t$$