October 24 MATH 1113 sec. 51 Fall 2018

Section 6.3: Angles, Rotations, and Angle Measures

Figure: An angle in standard position determined by a point (x, y). Any such point lives on a circle in the plane centered at the origin having radius $r=\sqrt{x^{2}+y^{2}}$

Trigonometric Function of any Angle

$\tan \theta=\frac{y}{x} \quad($ for $x \neq 0)$
Figure: The definitions for the sine, cosine and tangent of any angle θ are given in terms of x, y, and r.

Trigonometric Function of any Angle

$\csc \theta=\frac{r}{y} \quad($ for $y \neq 0)$
$\sec \theta=\frac{r}{x} \quad($ for $x \neq 0)$

$\cot \theta=\frac{x}{y} \quad($ for $y \neq 0)$

Trigonometric Function of any Angle (Unit Circle Case)

Figure: A point on the unit circle, $r=1$, has coordinates $(x, y)=(\cos \theta, \sin \theta)$.

Reciprocal Identities

 equation is always true whenboth sides are defined.
We have the first in a long list of trigonometric identities:
Reciprocal Identities: For any given θ for which both sides are defined

$$
\csc \theta=\frac{1}{\sin \theta}, \quad \sec \theta=\frac{1}{\cos \theta}, \quad \& \quad \cot \theta=\frac{1}{\tan \theta} .
$$

Equivalently

$$
\sin \theta=\frac{1}{\csc \theta}, \quad \cos \theta=\frac{1}{\sec \theta}, \quad \& \quad \tan \theta=\frac{1}{\cot \theta} .
$$

Comparison to Acute Angle Definitions

Figure: Note that the acute angle definitions still hold.

A Couple of Degenerate Triangles
Determine the sine, cosine, and tangent values of 0° and 90° as possible.

$$
\begin{aligned}
& \cos 0^{\circ}=1 \quad \sin 0^{\circ}=0 \quad \begin{array}{l}
(\cos \theta, \sin \theta) \\
=(x, y)
\end{array} \\
& \tan 0^{\circ}=\frac{0}{1}=0 \\
& \cos 90^{\circ}=0 \quad \sin 90^{\circ}=1 \\
& \tan 90^{\circ}=\frac{1^{\prime \prime}}{0} \text { that's undefined }
\end{aligned}
$$

Quadrantal Angles

The angles 0° and 90° both have the property that when put in standard position, the terminal side is concurrent with one of the coordinate axes.

Definition: Quadrantal angles are those angles that when put in standard position have terminal side concurrent with a coordinate axis. In addition to 0° and 90°, some quadrantal angles include

$$
180^{\circ}, \quad 270^{\circ},-90^{\circ}, \text { and } 360^{\circ}
$$

A Useful Table of Trigonometric Values

θ°	0°	30°	45°	60°	90°
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	undef.

Quadrants \& Signs

Figure: The trigonometric values for a general angle may be positive, negative, zero, or undefined. The signs are determined by the signs of the x and y values. Note that $r>0$ by definition.

Quadrants \& Signs of Trig Values
θ has tervinde side in quadrant...

Example
Determine which quadrant the terminal side of θ must be in if
（a） $\sin \theta>0$ and $\tan \theta<0$

】
θ＇s terming side in

Quod I or II
（b） $\sec \theta<0$ and $\cot \theta>0$
\Downarrow

リ	Q
Quod II or	Quad 士
III	or III

θ is a quod II angle

Question for θ within one revolution

Suppose that $\sin \theta=-0.3420$ and $\cos \theta=-0.9397$. Which of the following must be true about θ ?
(a) $0^{\circ}<\theta<90^{\circ}$
(b) $90^{\circ}<\theta<180^{\circ}$
(c) $180^{\circ}<\theta<270^{\circ}$
(d) $270^{\circ}<\theta<360^{\circ}$
(e) any of the above may be true, more information is needed to determine which is true

Reference Angles

Suppose we want to find the trig values for the angle θ shown. Note that the acute angle (pink) has terminal side through (x, y), and by symmetry the terminal side of θ passes through the point $(-x, y)$ (same y and opposite sign x).

Figure: What is the connection between the trig values for θ and those for the acute angle in pink?

Reference Angles

Definition: Let θ be an angle in standard position. The reference angle θ^{\prime} associated with θ is the angle of measure $0^{\circ}<\theta^{\prime}<90^{\circ}$ between the terminal side of θ and the nearest part of the x-axis.

