Oct. 24 Math 1190 sec. 51 Fall 2016

Section 4.3: The Mean Value Theorem

Another significant consequence of the MVT is that it provides a test for the increasing and decreasing behavior of a differentiable function.

Theorem: Let f be differentiable on an open interval (a, b). If

- $f^{\prime}(x)>0$ on (a, b), the f is increasing on (a, b), and
- $f^{\prime}(x)<0$ on (a, b), the f is decreasing on (a, b).

Example

Determine the intervals over which f is increasing and the intervals over which it is decreasing where

$$
\begin{gathered}
f(x)=2 x^{3}-6 x^{2}-18 x+1 \\
\stackrel{+}{+1}+\underset{3}{+}+
\end{gathered}
$$

We did this problem on Friday. The domain of f is all reals. We found that $f^{\prime}(x)=6(x-3)(x+1)$ so that $f^{\prime}(x)=0$ when $x=3$ and when $x=-1$. We

- split the real line up by these numbers,
- tested the sign in each interval by putting a test value into $f^{\prime}(x)$, and
- recorded the signs.

Based on that, we determined that f is increasing on $(-\infty,-1) \cup(3, \infty)$ and decreasing on $(-1,3)$.

Question

Suppose that we compute the derivative of some function g and find

$$
g^{\prime}(x)=(2+x) e^{x / 2} .
$$

Determine the intervals over which g is increasing and over which it is decreasing.

(a) g is increasing on $(-1 / 2, \infty)$ and decreasing on $(-\infty,-1 / 2)$.
(b) g is increasing on $(-2, \infty)$ and decreasing on $(-\infty,-2)$.
(c) g is increasing on $(2, \infty)$ and decreasing on $(-\infty, 2)$.
(d) g is increasing on $(-\infty,-2)$ and decreasing on $(-2, \infty)$.

Section 4.4: Local Extrema and Concavity

We have already seen that the first derivative f^{\prime} can tell us about the behaviour of the function f-in particular, it gives information about where it is increasing or decreasing, and where it may take a local extreme value.

In this section, we'll expand on that as well as introduce information about a function that can be deduced from the nature of its second derivative.

Theorem: First derivative test for local extrema

Let f be continuous and suppose that c is a critical number of f.

- If f^{\prime} changes from negative to positive at c, then f has a local minimum at c.
- If f^{\prime} changes from positive to negative at c, then f has a local maximum at c.
- If f^{\prime} does not change signs at c, then f does not have a local extremum at c.

Note: we read from left to right as usual when looking for a sign change.

Figure: First derivative test

Example
Find all the critical points of the function and classify each one as a local maximum, a local minimum, or neither.

$$
f(x)=x^{1 / 3}(16-x)=16 x^{1 / 3}-x^{4 / 3}
$$

The domain is $(-\infty, \infty)$.
Find the critical points:

$$
\begin{aligned}
f^{\prime}(x) & =16\left(\frac{1}{3} x^{-2 / 3}\right)-\frac{4}{3} x^{1 / 3} \\
& =\frac{16}{3 x^{2 / 3}}-\frac{4 x^{1 / 3}}{3} \cdot \frac{x^{2 / 3}}{x^{2 / 3}} \\
& =\frac{16}{3 x^{2 / 3}}-\frac{4 x}{3 x^{2 / 3}}=\frac{16-4 x}{3 x^{2 / 3}}
\end{aligned}
$$

$$
f^{\prime}(x)=\frac{16-4 x}{3 x^{2 / 3}}
$$

$f^{\prime}(x)=0$ if the numerator is zero

$$
16-4 x=0 \quad \Rightarrow 16=4 x \Rightarrow x=4
$$

$f^{\prime}(x)$ is undefined if the denominator is $z e_{0} 0$.

$$
3 x^{2 / 3}=0 \Rightarrow x=0
$$

Do a sign analysis on $f^{\prime}(x)=\frac{16-4 x}{3 x^{2 / 3}}=\frac{16-4 x}{3 \sqrt[3]{x^{2}}}$

Test -1: $\quad f^{\prime}(-1)=\frac{16-4(-1)}{3 \sqrt[3]{(-1)^{2}}}=\frac{20}{3}$

$$
\begin{aligned}
& 1: f^{\prime}(1)=\frac{16-4 \cdot 1}{3 \sqrt[3]{1^{2}}}=\frac{12}{3} \\
& s: f^{\prime}(5)=\frac{16-4 \cdot 5}{3 \sqrt[3]{(5)^{2}}}=\frac{-4}{3 \sqrt[3]{25}}
\end{aligned}
$$

The sign of f^{\prime} doesint change $c x=0$. There is no local extremum there.

The sign of f^{\prime} changes from + to © $x=4$. f has a loud maximum at $x=4$.

Question

Consider the function $f(t)=t^{4}+4 t^{3}$. Which of the following is true about this function?

$$
f^{\prime}(t)=4 t^{3}+12 t^{2}=4 t^{2}(t+3)
$$

(a) f has a local minimum at $t=0$ and a local maximum at $t=-3$.
(b) f has a local minimum at $t=-3$ and a local maximum at $t=0$.
(c) f has a local minimum at $t=-3$.
(d) f has a local minimum at $t=0$.

Concavity and The Second Derivative

Concavity: refers to the bending nature of a graph. In particular, a curve is concave down if it's cupped side is down, and it is concave up if it's cupped upward.

Concavity

Figure

Figure: A graph can have either increasing or decreasing behavior and be either concave up or down.

Figure: We can consider concavity at a point, but it's best thought of as a property over an interval. Many function's graphs have concavity that changes over the domain.

Definition of Concavity

If the graph of a function f lies above all of its tangent lines over an interval l, then f is concave up on I. If the graph of f lies below each of its tangent lines on an interval I, f is concave down on I.

Theorem: (Second Derivative Test for Concavity) Suppose f is twice differentiable on an interval l.

- If $f^{\prime \prime}(x)>0$ on I, then the graph of f is concave up on I.
- If $f^{\prime \prime}(x)<0$ on I, then the graph of f is concave down on I.

Definition: A point P on a curve $y=f(x)$ is called an inflection point if f is continuous at P and the concavity of f changes at P (from down to up or from up to down). A point where $f^{\prime \prime}(x)=0$ would be a
candidate for being an inflection point.

$$
\text { Tor where } f^{\prime \prime}(x)^{\text {is }}
$$

Concavity and Extrema:

Theorem: (Second Derivative Test for Local Extrema) Suppose $f^{\prime}(c)=0$ and that $f^{\prime \prime}$ is continuous near c. Then

- if $f^{\prime \prime}(c)>0, f$ takes a local minimum at c,
- if $f^{\prime \prime}(c)<0$, then f takes a local maximum at c.

If $f^{\prime \prime}(c)=0$, then the test fails. f may or may not have a local extrema. You can go back to the first derivative test to find out.

Example

Analyze the function $f(x)=x e^{3 x}$. In particular, indicate
(a) the intervals on which f is increasing and decreasing,
(b) the intervals on which f is concave up and concave down, ς
(c) identify critical points and classify any local extrema, and
(d) identify any points of inflection. $\leftarrow 2^{n d}$ der

$$
\begin{aligned}
& \text { Find } f^{\prime} \text { and } f^{\prime \prime} \\
& \begin{aligned}
f^{\prime}(x) & =1 \cdot e^{3 x}+x e^{3 x} \cdot 3=e^{3 x}(1+3 x) \\
f^{\prime \prime}(x) & =e^{3 x} \cdot 3+1 \cdot e^{3 x} \cdot 3+x e^{3 x} \cdot 3 \cdot 3=e^{3 x}(6+9 x)
\end{aligned}
\end{aligned}
$$

Sign andy sis on $f^{\prime}(x)$: The domain of f is $(-\infty, \infty)$

$$
\begin{aligned}
f^{\prime}(x)=0 & \Rightarrow e^{3 x}(1+3 x)=0 \\
& \Rightarrow e^{3 x}=0 \text { (no solutions) or } 1+3 x=0 \Rightarrow x=\frac{-1}{3}
\end{aligned}
$$

$f^{\prime}(x)$ is undefined never.

Test $f^{\prime}(-1)=e^{-3}(1-3)=-2 e^{-3}$

$$
f^{\prime}(0)=e^{0}(1+0)=e^{0}=1
$$

(a) f is decreasing on $\left(-\infty,-\frac{1}{3}\right)$ and f is increasing on $\left(-\frac{1}{3}, \infty\right)$

Do a sigh oral y sis on $f^{\prime \prime}(x)=e^{3 x}(6+9 x)$

$$
\begin{array}{r}
f^{\prime \prime}(x)=0 \Rightarrow e^{3 x}(6+9 x)=0 \quad e^{3 x} \neq 0 \text { for all } x \\
\\
6+9 x=0 \Rightarrow 9 x=-6 \Rightarrow x=\frac{-6}{9}=\frac{-2}{3}
\end{array}
$$

Test

$$
\begin{aligned}
& f^{\prime \prime}(-1)=e^{-3}(6-9)=-3 e^{-3} \\
& f^{\prime \prime}(0)=e^{0}(6+0)=6 e^{0}=6
\end{aligned}
$$

(b) f is concave down on $\left(-\infty, \frac{-2}{3}\right)$ and f is concove up on $\left(\frac{-2}{3}, \infty\right)$
(d) f has on inflection pt. \& $x=\frac{-2}{3}$ since the concavity changes there.
(c) f has one critical number $\frac{-1}{3}$. The graph talus a loco minimum there by the 1 st (or $2^{\text {nd }}$) derivative test.

Questions

(1) True or False If $f^{\prime \prime}(2)=0$ it must be that f has an inflection point (2, f(2)). Fdese, concavity need not change. E.g. $f(x)=(x-z)^{4}$
(2) Suppose that we know a function f satisfies the two conditions $f^{\prime}(1)=0$ and $f^{\prime \prime}(1)=4$. Which of the following can we conclude with certainty?
$((\mathrm{a}) f$ has a local minimum at $(1, f(1))$.
(b) f has an inflection point at $(1, f(1))$.
(c) f has a local maximum at $(1, f(1))$.

(d) None of the above are necessarily true.

