October 24 Math 2306 sec. 56 Fall 2017

We defined The Laplace Transform

Definition: Let $f(t)$ be defined on $[0, \infty)$. The Laplace transform of f is denoted and defined by

$$
\mathscr{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t=F(s)
$$

The domain of the transformation $F(s)$ is the set of all s such that the integral is convergent.

The Laplace Transform is a Linear Transformation

Some basic results include:

- $\mathscr{L}\{\alpha f(t)+\beta \boldsymbol{g}(t)\}=\alpha F(s)+\beta G(s)$
- $\mathscr{L}\{1\}=\frac{1}{s}, \quad s>0$
- $\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}, \quad s>0$ for $n=1,2, \ldots$
- $\mathscr{L}\left\{e^{a t}\right\}=\frac{1}{s-a}, \quad s>a$
- $\mathscr{L}\{\cos k t\}=\frac{s}{s^{2}+k^{2}}, \quad s>0$
- $\mathscr{L}\{\sin k t\}=\frac{k}{s^{2}+k^{2}}, \quad s>0$

Section 14: Inverse Laplace Transforms

Given $F(s), f(t)$ an inverse Laplace transform of $F(s)$,

$$
\mathscr{L}^{-1}\{F(s)\}=f(t), \quad \text { provided } \quad \mathscr{L}\{f(t)\}=F(s) .
$$

In general, we'll use one table to find Laplace transforms and inverse transforms.

A Table of Inverse Laplace Transforms

- $\mathscr{L}^{-1}\left\{\frac{1}{s}\right\}=1$
- $\mathscr{L}^{-1}\left\{\frac{n!}{s^{n+1}}\right\}=t^{n}$, for $n=1,2, \ldots$
- $\mathscr{L}^{-1}\left\{\frac{1}{s-a}\right\}=e^{a t}$
- $\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+k^{2}}\right\}=\cos k t$
- $\mathscr{L}^{-1}\left\{\frac{k}{s^{2}+k^{2}}\right\}=\sin k t$

The inverse Laplace transform is also linear so that

$$
\mathscr{L}^{-1}\{\alpha F(s)+\beta G(s)\}=\alpha f(t)+\beta g(t)
$$

Example: Evaluate
will use a partial fraction
(c) $\mathscr{L}^{-1}\left\{\frac{s-8}{s^{2}-2 s}\right\}$ decomp.

$$
\begin{aligned}
& \frac{s-8}{s^{2}-2 s}= \frac{s-8}{s(s-2)}=\frac{A}{s}+\frac{B}{s-2} \quad \text { clear fraction } \\
& s-8=A(s-2)+B s \\
& s-8=(A+B) s-2 A
\end{aligned}
$$

$$
\begin{aligned}
& s-8=A(s-2)+B S \\
& s-8=(A+B) s-2 A \\
& s-s^{s} \\
& A+B=1 \\
&-2 A=-8 \Rightarrow A=4
\end{aligned} \quad B=1-A=1-4=-3
$$

$$
\begin{aligned}
\mathcal{L}^{-1}\left\{\frac{s-8}{s^{2}-2 s}\right\} & =\mathcal{L}^{-1}\left\{\frac{4}{s}-\frac{3}{s-2}\right\} \\
& =4 \mathcal{L}^{-1}\left\{\frac{1}{s}\right\}-3 \mathcal{L}^{-1}\left\{\frac{1}{s-2}\right\} \\
& =4(1)-3 e^{2 t} \\
& =4-3 e^{2 t}
\end{aligned}
$$

Section 15: Shift Theorems

Suppose we wish to evaluate $\mathscr{L}^{-1}\left\{\frac{2}{(s-1)^{3}}\right\}$. Does it help to know that $\mathscr{L}\left\{t^{2}\right\}=\frac{2}{s^{3}}$?

By definition $\mathscr{L}\left\{e^{t} t^{2}\right\}=\int_{0}^{\infty} e^{-s t} e^{t} t^{2} d t \quad \begin{gathered}\text { Note } \\ e^{-s t} \cdot e^{t}=e^{-s t+t}\end{gathered}$

Observe that this is simply the Laplace transform of $f(t)=t^{2}$ evaluated at $s-1$. Letting $F(s)=\mathscr{L}\left\{t^{2}\right\}$, we have

$$
F(s-1)=\frac{2}{(s-1)^{3}}
$$

Theorem (translation in s)

Suppose $\mathscr{L}\{f(t)\}=F(s)$. Then for any real number a

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}=F(s-a) .
$$

For example,

$$
\begin{gathered}
\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}} \Longrightarrow \mathscr{L}\left\{e^{a t t^{n}}\right\}=\frac{n!}{(s-a)^{n+1}} . \\
\mathscr{L}\{\cos (k t)\}=\frac{s}{s^{2}+k^{2}} \Longrightarrow \mathscr{L}\left\{e^{a t} \cos (k t)\right\}=\frac{s-a}{(s-a)^{2}+k^{2}} .
\end{gathered}
$$

Inverse Laplace Transforms (completing the square)
(a) $\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+2 s+2}\right\} \quad s^{2}+2 s+2$ doesn't factor, it's irreducible.

Complete the square

$$
\begin{aligned}
& s^{2}+2 s+2=s^{2}+2 s+1+1=(s+1)^{2}+1 \\
& \frac{s}{s^{2}+2 s+1}=\frac{s}{(s+1)^{2}+1} \\
& =\frac{s+1-1}{(s+1)^{2}+1} \\
& \mathcal{L}\{\cos (k t)\}=\frac{s}{\delta^{2}+k^{2}} \\
& \text { we read all } S \text { terns } \\
& \alpha \text { be } s+1 \\
& \mathcal{L}\{\sin (k t)\}=\frac{k}{s^{2}+k^{2}}
\end{aligned}
$$

$$
\begin{aligned}
&=\frac{s+1}{(s+1)^{2}+1}-\frac{1}{(s+1)^{2}+1} \\
& \text { so } \\
& \mathcal{L}^{-1}\left\{\frac{s}{s^{2}+2 s+1}\right\}=\mathcal{L}^{-1}\left\{\frac{s+1}{(s+1)^{2}+1}-\frac{1}{(s+1)^{2}+1}\right\} \\
&=\mathcal{L}^{-1}\left\{\frac{s+1}{(s+1)^{2}+1}\right\}-\mathcal{L}^{-1}\left\{\frac{1}{(s+1)^{2}+1}\right\} \\
&=e^{-t} \cos t-e^{-t} \sin t
\end{aligned}
$$

Inverse Laplace Transforms (repeat linear factors)
(b) $\mathscr{L}^{-1}\left\{\frac{1+3 s-s^{2}}{s(s-1)^{2}}\right\}$

The denominator is factored, so will do a partial fraction decamp.

$$
\begin{aligned}
\frac{1+3 s-s^{2}}{s(s-1)^{2}} & =\frac{A}{s}+\frac{B}{s-1}+\frac{C}{(s-1)^{2}} \quad \begin{array}{c}
\text { Clear froctisws } \\
s(s-1)^{2}
\end{array} \\
1+3 s-s^{2} & =A(s-1)^{2}+B s(s-1)+C s \\
& =A\left(s^{2}-2 s+1\right)+B\left(s^{2}-s\right)+C s \\
1+3 s-s^{2} & =(A+B) s^{2}+(-2 A-B+C) s+A
\end{aligned}
$$

$$
\begin{aligned}
& 1=A \\
& 3=-2 A-B+C \quad C=3+2 A+B=3+2(1)-2=3 \\
&-1=A+B \quad \Rightarrow \quad B=-1-A=-1-1=-2 \\
& \mathcal{L}^{-1}\left\{\frac{1+3 s-s^{2}}{s(s-1)^{2}}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{s}-\frac{2}{s-1}+\frac{3}{(s-1)^{2}}\right\} \\
&=\mathcal{L}^{-1}\left\{\frac{1}{s}\right\}-2 \mathcal{L}^{-1}\left\{\frac{1}{s-1}\right\}+3 \mathcal{L}^{-1}\left\{\frac{1}{(s-1)^{2}}\right\} \\
&=1-2 e^{t}+3 e^{t} t \quad \text { lile } \\
& \text { loous } \frac{1}{s^{2}} \\
& \text { * } \mathscr{L}\left\{t^{1}\right\}=\frac{1!}{s^{1+1}}=\frac{1}{s^{2}}
\end{aligned}
$$

The Unit Step Function

Let $a \geq 0$. The unit step function $\mathscr{U}(t-a)$ is defined by

$$
\mathscr{U}(t-a)= \begin{cases}0, & 0 \leq t<a \\ 1, & t \geq a\end{cases}
$$

Figure: We can use the unit step function to provide convenient expressions for piecewise defined functions.

Piecewise Defined Functions
Verify that

$$
f(t)=\left\{\begin{array}{l}
g(t), \quad 0 \leq t<a \\
h(t), \quad t \geq a
\end{array}=g(t)-g(t) \mathscr{U}(t-a)+h(t) \mathscr{U}(t-a)\right.
$$

For $0 \leq t<a, u(t-a)=0$. The right sid is

$$
g(t)-g(t) \cdot 0+h(t) \cdot 0=g(t)
$$

For $t \geqslant a, u(t-a)=1$. The right side is

$$
g(t)-g(t) \cdot 1+h(t) \cdot 1=h(t)
$$

Piecewise Defined Functions in Terms of \mathscr{U}
Write f on one line in terms of \mathscr{U} as needed

$$
\left.\begin{array}{l}
f(t)= \begin{cases}e^{t}, & 0 \leq t<2 \\
t^{2}, & 2 \leq t<5 \\
2 t & t \geq 5\end{cases} \\
f(t)=e^{t}-e^{t} u(t-2)+t^{2} u(t-2)-t^{2} u(t-5)+2 t u(t-5) \\
\text { vert. ty: } 0 \leq t<2, \quad u(t-2)=0 \text { and } u(t-5)=0 \\
t<2 \Rightarrow t<5
\end{array}\right\} \begin{aligned}
& f(t)=e^{t}-e^{t} \cdot 0+t^{2} \cdot 0-t^{2} \cdot 0+2 t \cdot 0=e^{t}
\end{aligned}
$$

For $\quad 2 \leq t<5, u(t-2)=1 \quad u(t-5)=0$

$$
f(t)=e^{t}-e^{t} \cdot 1+t^{2} \cdot 1-t^{2} \cdot 0+2 t \cdot 0=t^{2}
$$

For $\quad t \geqslant 5 \quad u(t-2)=1 \quad u(t-5)=1$

$$
t \geqslant s \Rightarrow t \geqslant 2
$$

$$
f(t)=e^{t}-e^{t} \cdot 1+t^{2} \cdot 1-t^{2} \cdot 1+2 t \cdot 1=2 t
$$

