## October 24 Math 3260 sec. 58 Fall 2017

## Recall the Law of Cosines

For triangle with angles $A, B, C$ and opposite sides of lengths $a, b$, and $c$, respectively,

$$
c^{2}=a^{2}+b^{2}-2 a b \cos (C)
$$



## Geometry of the Dot Product



Figure: We can use the law of cosines to show that in $\mathbb{R}^{2}$ that $\mathbf{u} \cdot \mathbf{v}$ is related to the angle between the two (nonzero) vectors. This holds in $\mathbb{R}^{n}$. We're just restricting $n$ to 2 for ease of computation.

By the low of cosines

$$
\begin{aligned}
&\|\vec{u}-\vec{v}\|^{2}=\|\vec{u}\|^{2}+\|\vec{v}\|^{2}-2\|\vec{u}\|\|\vec{v}\| \cos \theta \\
&\|\vec{u}-\vec{v}\|^{2}=(\vec{u}-\vec{v}) \cdot(\vec{u}-\vec{v}) \\
&=\vec{u} \cdot \vec{u}-\vec{u} \cdot \vec{v}-\vec{v} \cdot \vec{u}+\vec{v} \cdot \vec{v} \\
&=\|\vec{u}\|^{2}-2 \vec{u} \cdot \vec{v}+\|\vec{v}\|^{2} \\
&\left\|\vec{\tau}_{\mu}\right\|^{2}-2 \vec{u} \cdot \vec{v}+\|\vec{v}\|^{2}=\|\vec{u}\|^{2}+\|\vec{v}\|^{2}-2\|\vec{u}\|\|\vec{v}\| \cos \theta \\
&-2 \vec{u} \cdot \vec{v}=-2 \cdot\|\vec{u}\|\|\vec{v}\| \cos \theta
\end{aligned}
$$

$$
\Rightarrow \quad \vec{u} \cdot \vec{v}=\|\vec{u}\|\|\vec{u}\| \cos \theta
$$

## Section 6.2: Orthogonal Sets

Remark: We know that if $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{p}\right\}$ is a basis for a subspace $W$ of $\mathbb{R}^{n}$, then each vector $\mathbf{x}$ in $W$ can be realized (uniquely) as a sum

$$
\mathbf{x}=c_{1} \mathbf{b}_{2}+\cdots+c_{p} \mathbf{b}_{p}
$$

If $n$ is very large, the computations needed to determine the coefficients $c_{1}, \ldots, c_{p}$ may require a lot of time (and machine memory).

Question: Can we seek a basis whose nature simplifies this task? And what properties should such a basis possess?

## Orthogonal Sets

Definition: An indexed set $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ in $\mathbb{R}^{n}$ is said to be an orthogonal set provided each pair of distinct vectors in the set is orthogonal. That is, provided

$$
\mathbf{u}_{i} \cdot \mathbf{u}_{j}=0 \quad \text { whenever } \quad i \neq j .
$$

Example: Show that the set $\left.\left\{\begin{array}{l}3 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ -4 \\ 7\end{array}\right]\right\}$ is an
orthogonal set.
$\vec{u}_{1} \vec{u}_{2} \quad \vec{u}_{3}$

$$
\begin{aligned}
& \vec{u}_{1} \cdot \vec{u}_{2}=3(-1)+1(2)+1(1)=-3+2+1=0 \\
& \vec{u}_{1} \cdot \vec{u}_{3}=3(-1)+1(-4)+1(7)=-3-4+7=0
\end{aligned}
$$

$$
\vec{u}_{2} \cdot \vec{u}_{3}=(-1)(-1)+2(-4)+1(7)=1-8+7=0
$$

The set is orthogond.

## Orthongal Basis

Definition: An orthogonal basis for a subspace $W$ of $\mathbb{R}^{n}$ is a basis that is also an orthogonal set.

Theorem: Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal basis for a subspace $W$ of $\mathbb{R}^{n}$. Then each vector $\mathbf{y}$ in $W$ can be written as the linear combination

$$
\mathbf{y}=c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{p} \mathbf{u}_{p}, \quad \text { where the weights }
$$

$$
c_{j}=\frac{\mathbf{y} \cdot \mathbf{u}_{j}}{\mathbf{u}_{j} \cdot \mathbf{u}_{j}} .
$$

Note

$$
\begin{aligned}
& \text { Note }^{\prime}=c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}+\ldots+c_{j-1} \vec{u}_{j-1}+c_{j} \vec{u}_{j}+c_{j+1} \vec{u}_{j+1}+\ldots+c_{p} \vec{u}_{p} \\
& \vec{y}_{y} \cdot \vec{u}_{j}=\left(c_{1} \vec{u}_{1}+\ldots+c_{p} \vec{u}_{p}\right) \cdot \vec{u}_{j} \\
&=c_{1} \vec{u}_{1} \cdot \vec{u}_{j}+c_{2} \vec{u}_{2} \cdot \vec{u}_{j}+\ldots+c_{j} u_{j} \cdot u_{j}+\ldots+c_{p} \vec{u}_{p} \cdot \vec{u}_{j} \\
& \Rightarrow c_{o}^{\prime \prime} \\
& \Rightarrow c_{j}\left\|\vec{u}_{j}\right\|^{2} \\
& \vec{y}_{0} \cdot \vec{u}_{j} \\
&\left\|\vec{u}_{j}\right\|^{2}
\end{aligned}
$$

Example
$\left\{\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ -4 \\ 7\end{array}\right]\right\}$ is an orthogonal basis of $\mathbb{R}^{3}$. Express the vector $\mathbf{y}=\left[\begin{array}{c}-2 \\ 3 \\ 0\end{array}\right] \begin{aligned} & \vec{u}_{3} \\ & \text { as a linear combination of the basis vectors. }\end{aligned}$

$$
\begin{aligned}
& \left\|\vec{u}_{1}\right\|^{2}=9+1+1=11, \quad\left\|\vec{u}_{2}\right\|^{2}=1+4+1=6,\left\|\vec{u}_{3}\right\|^{2}=1+16+49=66 \\
& \vec{y} \cdot \vec{u}_{1}=-2(3)+3(1)+0=-3 \\
& \vec{y} \cdot \vec{u}_{2}=-2(-1)+3(2)+0=8 \\
& \vec{y} \cdot \vec{u}_{3}=-2(-1)+3(-4)=-10
\end{aligned}
$$

$$
\vec{y}=\frac{-3}{11} \vec{u}_{1}+\frac{8}{6} \vec{u}_{2}-\frac{10}{66} \vec{u}_{3}
$$

## Projection

Given a nonzero vector u, suppose we wish to decompose another nonzero vector $\mathbf{y}$ into a sum of the form

$$
\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}
$$

in such a way that $\hat{\mathbf{y}}$ is parallel to $\mathbf{u}$ and $\mathbf{z}$ is perpendicular to $\mathbf{u}$.


Projection
Since $\hat{\mathbf{y}}$ is parallel to $\mathbf{u}$, there is a scalar $\alpha$ such that

$$
\hat{\mathbf{y}}=\alpha \mathbf{u} .
$$

we read $\vec{y}=\hat{y}+\vec{z}$ wi th $\vec{z} \cdot \vec{u}=0$

$$
\begin{aligned}
& \vec{y} \cdot \vec{u}=(\hat{y}+\vec{z}) \cdot \vec{u}=\hat{y} \cdot \vec{u}+\vec{z} \cdot \vec{u} \\
&=\hat{y} \cdot \vec{u} \quad \text { setting } \hat{y}=\alpha \vec{u} \\
&=(\alpha \vec{u}) \cdot \vec{u} \\
&=\alpha(\vec{u} \cdot \vec{u}) \\
& \Rightarrow \alpha=\frac{\vec{y} \cdot \vec{u}}{\|\vec{u}\|^{2}}
\end{aligned}
$$

Projection onto the subspace $L=\operatorname{Span}\{\mathbf{u}\}$
Notation: $\quad \hat{\mathbf{y}}=\operatorname{proj}_{L} \vec{y}=\left(\frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}\right) \mathbf{u}$
Example: Let $\mathbf{y}=\left[\begin{array}{l}7 \\ 6\end{array}\right]$ and $\mathbf{u}=\left[\begin{array}{l}4 \\ 2\end{array}\right]$. Write $\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}$ where $\hat{\mathbf{y}}$ is in $\operatorname{Span}\{\mathbf{u}\}$ and $\mathbf{z}$ is orthogonal to $\mathbf{u}$.

$$
\begin{aligned}
\hat{y}=\frac{\vec{y} \cdot \vec{u}}{\|\vec{u}\|^{2}} \vec{u} & =\frac{7 \cdot 4+6 \cdot 2}{4^{2}+2^{2}} \vec{u}=\frac{40}{20} \vec{u}=2 \vec{u}=\left[\begin{array}{l}
8 \\
4
\end{array}\right] \\
\vec{z} & =\vec{y}-\hat{y}=\left[\begin{array}{l}
7 \\
6
\end{array}\right]-\left[\begin{array}{l}
8 \\
4
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
\end{aligned}
$$

$$
\vec{y}=\hat{y}+\vec{z}=\left[\begin{array}{l}
8 \\
4
\end{array}\right]+\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
$$

Example Continued...
Determine the distance between the point $(7,6)$ and the line $\operatorname{Span}\{\mathbf{u}\}$.

The distance is $\|\vec{z}\|$.

$$
\|\vec{z}\|=\sqrt{(-1)^{2}+2^{2}}=\sqrt{5}
$$

## Orthonormal Sets

Definition: A set $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is called an orthonormal set if it is an orthogonal set of unit vectors.

Definition: An orthonormal basis of a subspace $W$ of $\mathbb{R}^{n}$ is a basis that is also an orthonormal set.
$\left.\left.\begin{array}{l}\text { Example: Show that }\left\{\left[\begin{array}{l}\frac{3}{5} \\ \frac{4}{5}\end{array}\right],\left[\begin{array}{c}-\frac{4}{5} \\ \mathbb{R}^{2} .\end{array}\right]\right\} \text { is an orthonormal basis for } \\ \frac{3}{5}\end{array}\right]\right\}$ 亗

$$
\begin{array}{ll}
\vec{u}_{1} \cdot \vec{u}_{2}=\frac{3}{5}\left(\frac{4}{5}\right)+\frac{4}{5}\left(\frac{3}{5}\right)=0 & \left\|\vec{u}_{2}\right\|^{2}=\left(\frac{-4}{5}\right)^{2}+\binom{3}{3}^{2}=\frac{16+9}{25}=1 \\
\left\|\vec{u}_{1}\right\|^{2}=\left(\frac{3}{5}\right)^{2}+\left(\frac{4}{5}\right)^{2}=\frac{9+16}{25}=\frac{25}{25}=1 & \text { The sat is orthonormal. }
\end{array}
$$

To see that $\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$ is a basis for $\mathbb{R}^{2}$,

Note that dat $\left[\begin{array}{cc}\frac{3}{5} & \frac{-4}{5} \\ \frac{4}{5} & \frac{3}{5}\end{array}\right]=\left(\frac{3}{5}\right)^{2}-\left(\frac{4}{5}\right)\left(\frac{4}{5}\right)=1$

The columns are lin. independent, hence they forme basis for $\mathbb{R}^{2}$.

Hence the set is an orthonormal basis for $\mathbb{R}^{2}$.

## Orthogonal Matrix

Consider the matrix $U=\left[\begin{array}{cc}\frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & \frac{3}{5}\end{array}\right]$ whose columns are the vectors in the last example. Compute the product
$U^{T} U=\left[\begin{array}{cc}\frac{3}{5} & \frac{4}{5} \\ \frac{-4}{5} & \frac{3}{5}\end{array}\right]\left[\begin{array}{cc}\frac{3}{5} & \frac{-4}{5} \\ \frac{4}{5} & \frac{3}{5}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
This shows that $U^{\top}=U^{-1}$
What does this say about $U^{-1}$ ?

## Orthogonal Matrix

Definition: A square matrix $U$ is called an orthogonal matrix if $U^{T}=U^{-1}$.

Theorem: An $n \times n$ matrix $U$ is orthogonal if and only if it's columns form an orthonormal basis of $\mathbb{R}^{n}$.

The linear transformation associated to an orthogonal matrix preserves lenghts and angles in the following sense:

## Theorem: Orthogonal Matrices

Let $U$ be an $n \times n$ orthogonal matrix and $\mathbf{x}$ and $\mathbf{y}$ vectors in $\mathbb{R}^{n}$. Then
(a) $\|U \mathbf{x}\|=\|\mathbf{x}\|$
(b) $(U \mathbf{x}) \cdot(U \mathbf{y})=\mathbf{x} \cdot \mathbf{y}$, in particular
(c) $(U \mathbf{x}) \cdot(U \mathbf{y})=0$ if and only if $\mathbf{x} \cdot \mathbf{y}=0$.

Proof (of (a)):

$$
\begin{array}{rlr}
\|u \vec{x}\|^{2} & =(u \vec{x}) \cdot(u \vec{x}) \quad \text { By definition of the } \\
& =(u \vec{x})^{\top}(u \vec{x}) &
\end{array}
$$

$$
\begin{aligned}
& =\left(\vec{x}^{\top} U^{\top}\right)(u \vec{x}) \quad \sin u \\
& =\vec{x}^{\top}\left(U^{\top} u\right) \vec{x} \\
& =\vec{x}^{\top} I \vec{x} \\
& =\vec{x}^{\top} \vec{x}=B^{\top} A^{\top} \\
& =\|\vec{x}\|^{2}
\end{aligned}
$$

Hence $\|u \vec{x}\|=\|\vec{x}\|$

