## Oct. 26 Math 1190 sec. 51 Fall 2016

## Section 4.5: Indeterminate Forms \& L'Hôpital's Rule

Consider the following three limit statements (all of which are true):
(a) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=2$
(b) $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
(c) $\lim _{x \rightarrow 3} \frac{x^{2}-9}{(x-3)^{2}}$ doesn't exist

Note: Each of these three limits involve both numerator and denominator going to zero-giving the form $\frac{0}{0}$. In the top two, the limit exists, but the limits are different. In the third, the limit doesn't exist.

## Indeterminate Forms

## $0 / 0$ is called an Indeterminate form.

Other indeterminate forms we'll encounter include

$$
\frac{ \pm \infty}{ \pm \infty}, \quad \infty-\infty, \quad 0 \infty, \quad 1^{\infty}, \quad 0^{0}, \quad \text { and } \quad \infty^{0}
$$

Indeterminate forms are not defined (as numbers)

## Theorem: I'Hospital's Rule

Suppose $f$ and $g$ are differentiable on an open interval $/$ containing $c$ (except possibly at $c$ ), and suppose $g^{\prime}(x) \neq 0$ on I. If

$$
\lim _{x \rightarrow c} f(x)=0 \text { and } \lim _{x \rightarrow c} g(x)=0
$$

OR if

$$
\lim _{x \rightarrow c} f(x)= \pm \infty \quad \text { and } \quad \lim _{x \rightarrow c} g(x)= \pm \infty
$$

then

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

provided the limit on the right exists (or is $\infty$ or $-\infty$ ).

Evaluate each limit if possible
(a) $\lim _{x \rightarrow 1} \frac{\ln x}{x-1}=\frac{0 " \prime}{0} \quad$ Note: $\lim _{x \rightarrow 1} \ln x=\ln 1=0$
apply $l^{\prime} H$ rule

$$
\begin{aligned}
& =\lim _{x \rightarrow 1} \frac{\frac{d}{d x} \ln x}{\frac{d}{d x}(x-1)} \\
& =\lim _{x \rightarrow 1} \frac{\lim _{x \rightarrow 1} x-1=}{1-0}=\lim _{x \rightarrow 1} \frac{\frac{1}{x}}{1}=\frac{1}{1}=1
\end{aligned}
$$

$$
\lim _{x \rightarrow \infty} x=\infty
$$

$$
\lim _{x \rightarrow \infty} e^{-x}=0
$$

Options:
write $x e^{-x}=\frac{x}{\frac{1}{e^{-x}}}=\frac{x}{e^{x}}$
or

$$
x e^{-x}=\frac{e^{-x}}{\frac{1}{x}}
$$

$$
\begin{aligned}
& \text { (b) } \lim _{x \rightarrow \infty} x e^{-x}=\infty .0 \\
& =\lim _{x \rightarrow \infty} \frac{x}{e^{x}}={ }^{\prime \prime}{ }^{\prime \prime} \\
& \underset{\substack{\text { applo } \\
\text { rule }}}{\ln H}=\lim _{x \rightarrow \infty} \frac{\frac{d}{d x} x}{\frac{d}{d x} e^{x}} \\
& =\lim _{x \rightarrow \infty} \frac{1}{e^{x}}=\frac{1}{\infty} \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
& \text { (c) } \lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}=\frac{0^{\prime \prime}}{0} \\
& \lim _{x \rightarrow 0} 1-\cos x=1-\cos 0 \\
& =1-1=0 \\
& \underset{\text { rule }}{\text { apply } l^{\prime} H}=\lim _{x \rightarrow 0} \frac{\sin x}{2 x}=\frac{0}{0} \\
& \underset{\text { again }}{\operatorname{appl} \text { get }^{\prime \prime}}=\lim _{x \rightarrow 0} \frac{\cos x}{2}=\frac{\cos 0}{2} \\
& =\frac{1}{2}
\end{aligned}
$$

Questions
(1) (frue)or False) The limit $\lim _{x \rightarrow 3} \frac{2 x-6}{\ln (x / 3)}$ gives the indeterminate form " $0 / 0$ ".

$$
\begin{aligned}
& \lim _{x \rightarrow 3} 2 x-6=6-6=0 \\
& \lim _{x \rightarrow 3} \ln \left(\frac{x}{3}\right)=\ln \left(\frac{3}{3}\right)=\ln 1=0
\end{aligned}
$$

(2) Using L'Hôpital's rule, $\lim _{x \rightarrow 3} \frac{2 x-6}{\ln (x / 3)}=\lim _{x \rightarrow 3} \frac{2 x-6}{\ln x-\ln 3}$
(a) L'Hôpital's rule doesn't apply since there is no indeterminate form.
(b) $\frac{2}{3}$
(c) 6
(d) the limit doesn't exist.

$$
\lim _{x \rightarrow 3} \frac{2}{\frac{1}{x}-0}=\frac{2}{\frac{1}{3}}=2.3=6
$$

## Question


$y=f(x)$ and $y=g(x)$ close to $x=1$ are plotted on the same set of axes. Note that

$$
\lim _{x \rightarrow 1} f(x)=0 \text { and } \lim _{x \rightarrow 1} g(x)=0
$$

From the graph, only one of the following limit statements could be true. Which one?
(a) $\lim _{x \rightarrow 1} \frac{f(x)}{g(x)}=0$

Think ratio of

## slopes.

(b) $\lim _{x \rightarrow 1} \frac{f(x)}{g(x)}=2$
(c) $\lim _{x \rightarrow 1} \frac{f(x)}{g(x)}=-2$

The slope of $f$
near $c=1$ would have
to be positive.
l'Hospital's Rule is not a "Fix-all"

Evaluate $\lim _{x \rightarrow 0^{+}} \frac{\cot x}{\csc x}=\frac{\infty}{\infty}$ Us l'H sule

$$
\left.\begin{array}{l}
=\lim _{x \rightarrow 0^{+}} \frac{-\csc ^{2} x}{-\csc x \cot x}=\lim _{x \rightarrow 0^{+}} \frac{\csc x}{\cot x}=\frac{{ }^{\infty}}{\infty} \quad \text { Us l'H } \\
\text { agoin }
\end{array}\right]=\lim _{x \rightarrow 0^{+}} \frac{-\frac{\csc x \cot x}{-\csc ^{2} x}=\lim _{x \rightarrow 0^{+}} \frac{\cot x}{\csc x} \text { Dead end. }}{\lim _{x \rightarrow 0^{+}} \frac{\cot x}{\csc x}=\lim _{x \rightarrow 0^{+}} \frac{\frac{\cos x}{\sin x}}{\frac{1}{\sin x}}=\lim _{x \rightarrow 0^{+}} \frac{\cos x}{\sin x} \cdot \frac{\sin x}{1}=\lim _{x \rightarrow 0^{+}} \cos x=1}
$$

## Don't apply it if it doesn't apply!

$$
\lim _{x \rightarrow 2} \frac{x+4}{x^{2}-3}=\frac{6}{1}=6
$$



BUT

$$
\lim _{x \rightarrow 2} \frac{\frac{d}{d x}(x+4)}{\frac{d}{d x}\left(x^{2}-3\right)}=\lim _{x \rightarrow 2} \frac{1}{2 x}=\frac{1}{4} \text { rossense }
$$

## Remarks:

- l'Hopital's rule only applies directly to the forms $0 / 0$, or $( \pm \infty) /( \pm \infty)$.
- Multiple applications may be needed, or it may not result in a solution.
- It can be applied indirectly to the form $0 \cdot \infty$ by turning the product into a quotient.
- Derivatives of numerator and denominator are taken separately-this is NOT a quotient rule application.
- Applying it where it doesn't belong likely produces nonsense!

The form $\infty-\infty$
Evaluate the limit if possible

$$
\lim _{x \rightarrow 1^{+}} \frac{1}{\ln x}=\frac{1}{0}=\infty
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{+}}\left(\frac{1}{\ln x}-\frac{1}{x-1}\right)=\infty-\infty \\
&=\lim _{x \rightarrow 1^{+}}\left(\frac{x-1}{\ln x(x-1)}-\frac{\ln x}{\ln x(x-1)}\right) \\
&=\lim _{x \rightarrow 1^{+}}+\frac{x-1-\ln x}{(\ln x)(x-1)}=\lim _{x \rightarrow 1^{+}} \frac{1}{x-1}=\frac{1}{0}=\infty \\
&=\lim _{x \rightarrow 1^{+}} \frac{1-\frac{1}{x}}{\frac{1}{x}(x-1)+(\ln x) \cdot 1}=\lim _{x \rightarrow 1^{+}}\left(\frac{1-\frac{1}{x}}{1-\frac{1}{x}+\ln x}\right) \cdot \frac{x}{x}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow 1^{+}} \frac{x-1}{x-1+x \ln x}=\frac{0}{0} \quad \text { Use } l^{\prime \prime} H_{\text {cgoin }} \\
& =\lim _{x \rightarrow 1^{\prime}} \frac{1}{1+1 \cdot \ln x+x \cdot \frac{1}{x}} \\
& =\frac{1}{1+\ln 1+1 \cdot \frac{1}{1}}=\frac{1}{1+0+1}=\frac{1}{2}
\end{aligned}
$$

Indeterminate Forms $1^{\infty}, 0^{0}$, and $\infty^{0}$

Since the logarithm and exponential functions are continuous, and $\ln \left(x^{r}\right)=r \ln x$, we have

$$
\lim _{x \rightarrow a} F(x)=\exp \left(\ln \left[\lim _{x \rightarrow a} F(x)\right]\right)=\exp \left(\lim _{x \rightarrow a} \ln F(x)\right)
$$

provided this limit exists.
To take $\lim _{x \rightarrow a} F(x)$, tole

$$
\lim _{x \rightarrow a} \ln (F(x)) \text {. IF } \lim _{x \rightarrow a} \ln (F(x))=L
$$

then $\lim _{x \rightarrow a} F(x)=e^{L}$

Use this property to show that

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}}(1+x)^{1 / x} & =e \\
& \lim _{x \rightarrow 0^{+}}(1+x)^{\frac{1}{x}}=1^{\infty} "
\end{aligned}
$$

Consida $\ln (1+x)^{\frac{1}{x}}$.

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \ln (1+x)^{\frac{1}{x}} & =\lim _{x \rightarrow 0^{+}} \frac{1}{x} \ln (1+x) \\
& =\lim _{x \rightarrow 0^{+}} \frac{\ln (1+x)}{x}=\frac{0}{0}
\end{aligned}
$$

Use l'H sule

$$
\begin{aligned}
& =\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{1+x}}{1} \\
& =\lim _{x \rightarrow 0^{+}} \frac{1}{1+x}=\frac{1}{1+0}=1
\end{aligned}
$$

So $\lim _{x \rightarrow 0^{+}} \ln (1+x)^{\frac{1}{x}}=1$
Hence $\lim _{x \rightarrow 0^{+}}(1+x)^{\frac{1}{x}}=e^{1}=e$

Evaluate

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} x^{x} & =0^{0 "} \\
\text { Tale } \lim _{x \rightarrow 0^{+}} \ln \left(x^{x}\right) & =\lim _{x \rightarrow 0^{+}} x \ln x \\
& =" 0 \cdot(-\infty)
\end{aligned}
$$

Options $\quad x \ln x=\frac{\ln x}{\frac{1}{x}}$ or $x \ln x=\frac{x}{\frac{1}{\ln x}}$

$$
\lim _{x \rightarrow 0^{+}} x \ln x=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\frac{1}{x}}=\frac{-\infty}{\infty} \quad \text { use } \ell^{\prime} H
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{-x^{2}}
\end{aligned}=\lim _{x \rightarrow 0^{+}} \frac{1}{x}\left(\frac{-x^{2}}{1}\right) .
$$

## Question

(a) True or False: Since $1^{n}=1$ for every integer $n$, we should conclude that the indeterminate form $1^{\infty}$ is equal to 1 .
(b) True or False: Even though $a^{0}=1$ for every nonzero number $a$, we can not conclude that the indeterminate form $0^{0}$ is equal to 1 .

